




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
铜陵市高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 复数的虚部为( )A2B2iC2D2i2 过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、两点,若,且,则抛物线方程为( )A B C D【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力3 某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:x3456y2.5344.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是( )A =0.7x+0.35B =0.7x+1C =0.7x+2.05D =0.7x+0.45 4 设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=( )A5BCD5 利用计算机在区间(0,1)上产生随机数a,则不等式ln(3a1)0成立的概率是( )ABCD6 实数a=0.2,b=log0.2,c=的大小关系正确的是( )AacbBabcCbacDbca7 设集合S=|x|x1或x5,T=x|axa+8,且ST=R,则实数a的取值范围是( )A3a1B3a1Ca3或a1Da3或a18 已知圆C:x2+y2=4,若点P(x0,y0)在圆C外,则直线l:x0x+y0y=4与圆C的位置关系为( )A相离B相切C相交D不能确定9 设函数y=的定义域为M,集合N=y|y=x2,xR,则MN=( )ABNC1,+)DM10设M=x|2x2,N=y|0y2,函数f(x)的定义域为M,值域为N,则f(x)的图象可以是( )ABCD115名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A35BCD5312如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )ABC +D +1二、填空题13抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)14抛物线y2=8x上到焦点距离等于6的点的坐标是15函数y=ax+1(a0且a1)的图象必经过点(填点的坐标)16已知随机变量N(2,2),若P(4)=0.4,则P(0)=17已知直线l的参数方程是(t为参数),曲线C的极坐标方程是=8cos+6sin,则曲线C上到直线l的距离为4的点个数有个18如图,在平面直角坐标系xOy中,将直线y=与直线x=1及x轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V圆锥=()2dx=x3|=据此类推:将曲线y=x2与直线y=4所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=三、解答题19在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q()求k的取值范围;()设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由20【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=ax2+lnx(aR)(1)当a=时,求f(x)在区间1,e上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)g(x)f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”已知函数.。若在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围21已知函数f(x)=的定义域为A,集合B是不等式x2(2a+1)x+a2+a0的解集() 求A,B;() 若AB=B,求实数a的取值范围22已知斜率为1的直线l经过抛物线y2=2px(p0)的焦点F,且与抛物线相交于A,B两点,|AB|=4(I)求p的值;(II)若经过点D(2,1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围23(本小题满分12分)已知数列的各项均为正数,.()求数列的通项公式;()求数列的前项和24记函数f(x)=log2(2x3)的定义域为集合M,函数g(x)=的定义域为集合N求:()集合M,N;()集合MN,R(MN) 铜陵市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:复数=1+2i的虚部为2故选;C【点评】本题考查了复数的运算法则、虚部的定义,属于基础题2 【答案】C【解析】由已知得双曲线的一条渐近线方程为,设,则,所以,解得或,因为,故,故,所以抛物线方程为3 【答案】A【解析】解:设回归直线方程=0.7x+a,由样本数据可得, =4.5, =3.5因为回归直线经过点(,),所以3.5=0.74.5+a,解得a=0.35故选A【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键4 【答案】C【解析】解:双曲线焦点在y轴上,故两条渐近线为 y=x,又已知渐近线为, =,b=2a,故双曲线离心率e=,故选C【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键5 【答案】C【解析】解:由ln(3a1)0得a,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a1)0成立的概率是P=,故选:C6 【答案】C【解析】解:根据指数函数和对数函数的性质,知log0.20,00.21,即0a1,b0,c1,bac故选:C【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键7 【答案】A【解析】解:S=|x|x1或x5,T=x|axa+8,且ST=R,解得:3a1故选:A8 【答案】C【解析】解:由点P(x0,y0)在圆C:x2+y2=4外,可得x02+y02 4,求得圆心C(0,0)到直线l:x0x+y0y=4的距离d=2,故直线和圆C相交,故选:C【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题9 【答案】B【解析】解:根据题意得:x+10,解得x1,函数的定义域M=x|x1;集合N中的函数y=x20,集合N=y|y0,则MN=y|y0=N故选B10【答案】B【解析】解:A项定义域为2,0,D项值域不是0,2,C项对任一x都有两个y与之对应,都不符故选B【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题11【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,故选:D【点评】本题主要考查分步计数原理的应用,属于基础题12【答案】D【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC面ABC,PAC是边长为2的正三角形,ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高于是此几何体的表面积S=SPAC+SABC+2SPAB=2+21+2=+1+故选:D【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状二、填空题13【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键14【答案】(4,) 【解析】解:抛物线方程为y2=8x,可得2p=8, =2抛物线的焦点为F(2,0),准线为x=2设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=m+2=6,解得m=4,n2=8m=32,可得n=4,因此,点P的坐标为(4,)故答案为:(4,)【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标着重考查了抛物线的定义与标准方程等知识,属于基础题15【答案】(0,2) 【解析】解:令x=0,得y=a0+1=2函数y=ax+1(a0且a1)的图象必经过点 (0,2)故答案为:(0,2)【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求函数的图象必过的定点16【答案】0.6 【解析】解:随机变量服从正态分布N(2,2),曲线关于x=2对称,P(0)=P(4)=1P(4)=0.6,故答案为:0.6【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题17【答案】2 【解析】解:由,消去t得:2xy+5=0,由=8cos+6sin,得2=8cos+6sin,即x2+y2=8x+6y,化为标准式得(x4)2+(y3)2=25,即C是以(4,3)为圆心,5为半径的圆又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题18【答案】8 【解析】解:由题意旋转体的体积V=8,故答案为:8【点评】本题给出曲线y=x2与直线y=4所围成的平面图形,求该图形绕xy轴转一周得到旋转体的体积着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题三、解答题19【答案】 【解析】解:()由已知条件,直线l的方程为,代入椭圆方程得整理得直线l与椭圆有两个不同的交点P和Q,等价于的判别式=,解得或即k的取值范围为()设P(x1,y1),Q(x2,y2),则,由方程, 又 而所以与共线等价于,将代入上式,解得由()知或,故没有符合题意的常数k【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题20【答案】(1) (2)a的范围是 .【解析】试题分析:(1)由题意得 f(x)=x2+lnx,f(x)在区间1,e上为增函数,即可求出函数的最值试题解析:(1)当 时,;对于x1,e,有f(x)0,f(x)在区间1,e上为增函数,(2)在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)f(x)f2(x)令 0,对x(1,+)恒成立,且h(x)=f1(x)f(x)=0对x(1,+)恒成立,若 ,令p(x)=0,得极值点x1=1,当x2x1=1,即 时,在(x2,+)上有p(x)0,此时p(x)在区间(x2,+)上是增函数,并且在该区间上有p(x)(p(x2),+),不合题意;当x2x1=1,即a1时,同理可知,p(x)在区间(1,+)上,有p(x)(p(1),+),也不合题意;若 ,则有2a10,此时在区间(1,+)上恒有p(x)0,从而p(x)在区间(1,+)上是减函数;要使p(x)0在此区间上恒成立,只须满足 ,所以 a又因为h(x)=x+2a=0,h(x)在(1,+)上为减函数,h(x)h(1)=+2a0,所以a综合可知a的范围是,21【答案】 【解析】解:(),化为(x2)(x+1)0,解得x2或x1,函数f(x)=的定义域A=(,1)(2,+);由不等式x2(2a+1)x+a2+a0化为(xa)(xa1)0,又a+1a,xa+1或xa,不等式x2(2a+1)x+a2+a0的解集B=(,a)(a+1,+);()AB=B,AB,解得1a1实数a的取值范围1,122【答案】 【解析】解:(I)由题意可知,抛物线y2=2px(p0)的焦点坐标为,准线方程为所以,直线l的方程为由消y并整理,得设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1(II)由(I)可知,抛物线的方程为y2=2x由题意,直线m的方程为y=kx+(2k1)由方程组(1)可得ky22y+4k2=0(2)当k=0时,由方程(2),得y=1把y=1代入y2=2x,得这时直线m与抛物线只有一个公共点当k0时,方程(2)得判别式为=44k(4k2)由0,即44k(4k2)0,亦即4k22k10解得于是,当且k0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,因此,所求m的取值范围是【点评】本题考查抛物线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电视台主持人口试指南预测试题及答案解读
- 电仪安全基础知识培训
- 2025年仓库安全员必-备知识面试模拟题及答案
- 赫初可颜眼部护理误区
- 制作风筝教学课件
- 信息化交流教学课件
- 田径安全知识培训内容课件
- 单词教学主题课件下载
- 贵州省毕节市2024-2025学年高二下学期期末考试化学试题(含答案)
- 新解读《GB-T 18916.37 - 2018取水定额 第37部分:湿法磷酸》
- 《献给阿尔吉侬的花束》读书分享
- 商用汽车金融方案
- 预拌混凝土试验室作业指导书(完整版)
- 神经根型腰椎病课件
- 反向开票政策解读课件
- (完整版)康复诊疗指南及规范
- 五年级下册黑布林英语阅读10篇
- 检验标本采集手册
- 浪潮集团在线测评题
- 2024-2025学年人教版八年级上册数学 期末综合能力测评卷
- GB 19522-2024车辆驾驶人员血液、呼气酒精含量阈值与检验
评论
0/150
提交评论