




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
满城区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 定义新运算:当ab时,ab=a;当ab时,ab=b2,则函数f(x)=(1x)x(2x),x2,2的最大值等于( )A1B1C6D122 在ABC中,AB边上的中线CO=2,若动点P满足=(sin2)+(cos2)(R),则(+)的最小值是( )A1B1C2D03 已知f(x)是定义在R上的奇函数,且f(x2)=f(x+2),当0x2时,f(x)=1log2(x+1),则当0x4时,不等式(x2)f(x)0的解集是( )A(0,1)(2,3)B(0,1)(3,4)C(1,2)(3,4)D(1,2)(2,3)4 已知函数f(x)=是R上的增函数,则a的取值范围是( )A3a0B3a2Ca2Da05 执行如图所示的程序框图,输出的结果是()A15 B21 C24 D356 若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( )A(0,+)B(0,2)C(1,+)D(0,1)7 定义在R上的偶函数在0,7上是增函数,在7,+)上是减函数,又f(7)=6,则f(x)( )A在7,0上是增函数,且最大值是6B在7,0上是增函数,且最小值是6C在7,0上是减函数,且最小值是6D在7,0上是减函数,且最大值是68 设向量,满足:|=3,|=4, =0以,的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A3B4C5D69 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等据此可判断丙必定值班的日期是( )A2日和5日B5日和6日C6日和11日D2日和11日10已知命题p:xR,2x3x;命题q:xR,x3=1x2,则下列命题中为真命题的是( )ApqBpqCpqDpq11过点(2,2)且与双曲线y2=1有公共渐近线的双曲线方程是( )A=1B=1C=1D=112设,且,则( )A B C D二、填空题13不等式恒成立,则实数的值是_.14当a0,a1时,函数f(x)=loga(x1)+1的图象恒过定点A,若点A在直线mxy+n=0上,则4m+2n的最小值是15已知=1bi,其中a,b是实数,i是虚数单位,则|abi|=16开始输出结【 解析】由已知圆心在直线上,所以圆心,又因为与圆外切于原点,且半径为,可求得,舍去。所以圆的标准方程为束是否与圆外切于原点,且半径为 的圆的标准方程为 17已知函数,其图象上任意一点处的切线的斜率恒成立,则实数的取值范围是 18已知数列an满足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前16项和为三、解答题19已知梯形ABCD中,ABCD,B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体()求几何体的表面积()判断在圆A上是否存在点M,使二面角MBCD的大小为45,且CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由20设集合(1)若,判断集合与的关系;(2)若,求实数组成的集合21(本小题满分10分)已知圆过点,.(1)若圆还过点,求圆的方程; (2)若圆心的纵坐标为,求圆的方程.22某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:50,6060,7070,8080,9090,100(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分23已知圆的极坐标方程为24cos()+6=0(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值 24某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50),50,60),90,100)后得到如图的频率分布直方图()求图中实数a的值;()根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;()若从样本中数学成绩在40,50)与90,100两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率满城区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:由题意知当2x1时,f(x)=x2,当1x2时,f(x)=x32,又f(x)=x2,f(x)=x32在定义域上都为增函数,f(x)的最大值为f(2)=232=6故选C2 【答案】 C【解析】解: =(sin2)+(cos2)(R),且sin2+cos2=1,=(1cos2)+(cos2)=+cos2(),即=cos2(),可得=cos2,又cos20,1,P在线段OC上,由于AB边上的中线CO=2,因此(+)=2,设|=t,t0,2,可得(+)=2t(2t)=2t24t=2(t1)22,当t=1时,( +)的最小值等于2故选C【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题3 【答案】D【解析】解:f(x)是定义在R上的奇函数,且f(x2)=f(x+2),f(0)=0,且f(2+x)=f(2x),f(x)的图象关于点(2,0)中心对称,又0x2时,f(x)=1log2(x+1),故可作出fx(x)在0x4时的图象,由图象可知当x(1,2)时,x20,f(x)0,(x2)f(x)0;当x(2,3)时,x20,f(x)0,(x2)f(x)0;不等式(x2)f(x)0的解集是(1,2)(2,3)故选:D【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题4 【答案】B【解析】解:函数是R上的增函数设g(x)=x2ax5(x1),h(x)=(x1)由分段函数的性质可知,函数g(x)=x2ax5在(,1单调递增,函数h(x)=在(1,+)单调递增,且g(1)h(1)解可得,3a2故选B5 【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24故答案为:C6 【答案】D【解析】解:方程x2+ky2=2,即表示焦点在y轴上的椭圆故0k1故选D【点评】本题主要考查了椭圆的定义,属基础题7 【答案】D【解析】解:函数在0,7上是增函数,在7,+)上是减函数,函数f(x)在x=7时,函数取得最大值f(7)=6,函数f(x)是偶函数,在7,0上是减函数,且最大值是6,故选:D8 【答案】B【解析】解:向量ab=0,此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现故选B【点评】本题主要考查了直线与圆的位置关系可采用数形结合结合的方法较为直观9 【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础10【答案】B【解析】解:因为x=1时,2131,所以命题p:xR,2x3x为假命题,则p为真命题令f(x)=x3+x21,因为f(0)=10,f(1)=10所以函数f(x)=x3+x21在(0,1)上存在零点,即命题q:xR,x3=1x2为真命题则pq为真命题故选B11【答案】A【解析】解:设所求双曲线方程为y2=,把(2,2)代入方程y2=,解得=2由此可求得所求双曲线的方程为故选A【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用12【答案】D【解析】考点:不等式的恒等变换.二、填空题13【答案】【解析】试题分析:因为不等式恒成立,所以当时,不等式可化为,不符合题意;当时,应满足,即,解得.1考点:不等式的恒成立问题.14【答案】2 【解析】解:整理函数解析式得f(x)1=loga(x1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=14m+2n2=2=2当且仅当4m=2n,即2m=n,即n=,m=时取等号4m+2n的最小值为2故答案为:215【答案】 【解析】解:=1bi,a=(1+i)(1bi)=1+b+(1b)i,解得b=1,a=2|abi|=|2i|=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题16【答案】 【解析】由已知圆心在直线上,所以圆心,又因为与圆外切于原点,且半径为,可求得,舍去。所以圆的标准方程为17【答案】【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,恒成立,由1考点:导数的几何意义;不等式恒成立问题【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点 (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件18【答案】546 【解析】解:当n=2k1(kN*)时,a2k+1=a2k1+1,数列a2k1为等差数列,a2k1=a1+k1=k;当n=2k(kN*)时,a2k+2=2a2k,数列a2k为等比数列,该数列的前16项和S16=(a1+a3+a15)+(a2+a4+a16)=(1+2+8)+(2+22+28)=+=36+292=546故答案为:546【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题三、解答题19【答案】 【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=422=8,或S=42+(422)+2=8;(2)作MEAC,EFBC,连结FM,易证FMBC,MFE为二面角MBCD的平面角,设CAM=,EM=2sin,EF=,tanMFE=1,tan=,CM=2【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目20【答案】(1);(2).【解析】考点:1、集合的表示;2、子集的性质.21【答案】(1);(2).【解析】试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程,将三点代入,求解圆的方程;(2)AB的垂直平分线过圆心,所以圆心的横坐标为,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.试题解析:(1)设圆的方程是,则由已知得,解得故圆的方程为.(2)由圆的对称性可知,圆心的横坐标为,故圆心,故圆的半径,故圆的标准方程为.考点:圆的方程22【答案】 【解析】解:(1)依题意,根据频率分布直方图中各个小矩形的面积和等于1得,10(2a+0.02+0.03+0.04)=1,解得a=0.005图中a的值0.005(2)这100名学生语文成绩的平均分为:550.05+650.4+750.3+850.2+950.05=73(分),【点评】本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解23【答案】 【解析】解:(1)24cos()+6=0,展开为:24(cos+sin)+6=0化为:x2+y24x4y+6=0(2)由x2+y24x4y+6=0可得:(x2)2+(y2)2=2圆心C(2,2),半径r=|OP|=2线段OP的最大值为2+=3最小值为2= 24【答案】 【解析】解:()由频率分布直方图,得:10(0.005+0.01+0.025+a+0.01)=1,解得a=0.03()由频率分布直方图得到平均分:=0.0545+0.155+0.265+0.375+0.2585+0.195=74(分)()由频率分布直方图,得数学成绩在40,50)内的学生人数为400.05=2,这两人分别记为A,B,数学成绩在90,100)内的学生人数为400.1=4,这4人分别记为C,D,E,F,若从数学成绩在40,50)与90,100)两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融创新考试题及答案
- 高校劳动合同补充协议
- 租车包括司机合同范本
- 网络游戏加盟合同范本
- 远程教育协议合同范本
- 门面装修广告合同范本
- 陕西省渭南市临渭区2025-2026学年七年级上学期开学考试语文试题(含答案)
- 软件委托采购合同范本
- 通信光缆布放合同范本
- 宠物专业测试题及答案
- 2025年泉州大队委笔试题目及答案
- 老年脓毒症相关脑病诊疗急诊专家共识解读
- 2025年秋期新教材教科版二年级上册小学科学教学计划+进度表
- 2024年宁波市宁海县国有企业招聘笔试真题
- 义乌市国有资本运营有限公司2025年度员工公开招聘笔试参考题库附带答案详解
- 2025上半年教师资格证小学《综合素质》笔试真题及答案
- 功率半导体器件基础课件
- 拆零药品培训课件
- 2024年江门市直学校招聘考试真题
- 新零售业态选址模型-洞察及研究
- 工业园区污水处理站运行成本优化初步设计评估报告
评论
0/150
提交评论