




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷平遥县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 设等差数列an的前n项和为Sn,已知S4=2,S5=0,则S6=( )A0B1C2D32 +(a4)0有意义,则a的取值范围是( )Aa2B2a4或a4Ca2Da43 圆上的点到直线的距离最大值是( )A B C D4 直线的倾斜角是( )ABCD5 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为( )A20,2 B24,4 C25,2 D25,46 (文科)要得到的图象,只需将函数的图象( )A向左平移1个单位 B向右平移1个单位 C向上平移1个单位 D向下平移1个单位7 已知双曲线=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的渐近线方程为y=x,则该双曲线的方程为( )A=1By2=1Cx2=1D=18 设复数z满足z(1+i)=2(i为虚数单位),则z=( )A1iB1+iC1iD1+i9 已知点P(x,y)的坐标满足条件,(k为常数),若z=3x+y的最大值为8,则k的值为( )ABC6D610在ABC中,a=1,b=4,C=60,则边长c=( )A13BCD2111已知函数,则曲线在点处切线的斜率为( )A1 B C2 D12已知直线x+ay1=0是圆C:x2+y24x2y+1=0的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则|AB|=( )A2B6C4D2二、填空题13设双曲线=1,F1,F2是其两个焦点,点M在双曲线上若F1MF2=90,则F1MF2的面积是14已知直线l的参数方程是(t为参数),曲线C的极坐标方程是=8cos+6sin,则曲线C上到直线l的距离为4的点个数有个15设是空间中给定的个不同的点,则使成立的点的个数有_个16在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是17已知是数列的前项和,若不等式对一切恒成立,则的取值范围是_【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力18若函数y=ln(2x)为奇函数,则a=三、解答题19已知命题p:x2,4,x22x2a0恒成立,命题q:f(x)=x2ax+1在区间上是增函数若pq为真命题,pq为假命题,求实数a的取值范围20设数列an的前n项和为Sn,a1=1,Sn=nann(n1)(1)求证:数列an为等差数列,并分别求出an的表达式;(2)设数列的前n项和为Pn,求证:Pn;(3)设Cn=,Tn=C1+C2+Cn,试比较Tn与的大小 21A1B1C1DD1CBAEF(本题满分12分)如图所示,在正方体ABCDA1B1C1D1中, E、F分别是棱DD1 、C1D1的中点. (1)求直线BE和平面ABB1A1所成角的正弦值; (2)证明:B1F平面A1BE22已知全集U=R,函数y=+的定义域为A,B=y|y=2x,1x2,求:(1)集合A,B;(2)(UA)B23(本小题满分12分)已知平面向量,.(1)若,求;(2)若与夹角为锐角,求的取值范围.24已知函数f(x)=2x24x+a,g(x)=logax(a0且a1)(1)若函数f(x)在1,3m上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)求实数a的值;设t1=f(x),t2=g(x),t3=2x,当x(0,1)时,试比较t1,t2,t3的大小 平遥县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:设等差数列an的公差为d,则S4=4a1+d=2,S5=5a1+d=0,联立解得,S6=6a1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题2 【答案】B【解析】解:+(a4)0有意义,解得2a4或a4故选:B3 【答案】【解析】试题分析:化简为标准形式,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,半径为1,所以距离的最大值是,故选B.考点:直线与圆的位置关系 14 【答案】A【解析】解:设倾斜角为,直线的斜率为,tan=,0180,=30故选A【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握5 【答案】C【解析】考点:茎叶图,频率分布直方图6 【答案】C【解析】试题分析:,故向上平移个单位.考点:图象平移 7 【答案】B【解析】解:已知抛物线y2=4x的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=x,则有a2+b2=c2=10和=,解得a=3,b=1所以双曲线的方程为:y2=1故选B【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用属于基础题8 【答案】A【解析】解:z(1+i)=2,z=1i故选:A【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题9 【答案】 B【解析】解:画出x,y满足的可行域如下图:z=3x+y的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,k=,故选B【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值10【答案】B【解析】解:a=1,b=4,C=60,由余弦定理可得:c=故选:B11【答案】A【解析】试题分析:由已知得,则,所以考点:1、复合函数;2、导数的几何意义.12【答案】B【解析】解:圆C:x2+y24x2y+1=0,即(x2)2+(y1)2 =4,表示以C(2,1)为圆心、半径等于2的圆由题意可得,直线l:x+ay1=0经过圆C的圆心(2,1),故有2+a1=0,a=1,点A(4,1)AC=2,CB=R=2,切线的长|AB|=6故选:B【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题二、填空题13【答案】9 【解析】解:双曲线=1的a=2,b=3,可得c2=a2+b2=13,又|MF1|MF2|=2a=4,|F1F2|=2c=2,F1MF2=90,在F1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF1|MF2|)2+2|MF1|MF2|,即4c2=4a2+2|MF1|MF2|,可得|MF1|MF2|=2b2=18,即有F1MF2的面积S=|MF1|MF2|sinF1MF2=181=9故答案为:9【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题14【答案】2 【解析】解:由,消去t得:2xy+5=0,由=8cos+6sin,得2=8cos+6sin,即x2+y2=8x+6y,化为标准式得(x4)2+(y3)2=25,即C是以(4,3)为圆心,5为半径的圆又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题15【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M,使成立。故答案为:16【答案】 【解析】解:由题设知C41p(1p)3C42p2(1p)2,解得p,0p1,故答案为:17【答案】【解析】由,两式相减,得,所以,于是由不等式对一切恒成立,得,解得18【答案】4 【解析】解:函数y=ln(2x)为奇函数,可得f(x)=f(x),ln(+2x)=ln(2x)ln(+2x)=ln()=ln()可得1+ax24x2=1,解得a=4故答案为:4三、解答题19【答案】 【解析】解:x2,4,x22x2a0恒成立,等价于ax2x在x2,4恒成立,而函数g(x)=x2x在x2,4递增,其最大值是g(4)=4,a4,若p为真命题,则a4;f(x)=x2ax+1在区间上是增函数,对称轴x=,a1,若q为真命题,则a1;由题意知p、q一真一假,当p真q假时,a4;当p假q真时,a1,所以a的取值范围为(,14,+)20【答案】 【解析】解:(1)证明:Sn=nann(n1)Sn+1=(n+1)an+1(n+1)nan+1=Sn+1Sn=(n+1)an+1nan2nnan+1nan2n=0an+1an=2,an是以首项为a1=1,公差为2的等差数列 由等差数列的通项公式可知:an=1+(n1)2=2n1,数列an通项公式an=2n1;(2)证明:由(1)可得,=(3),=,两式相减得=,=,=,=,nN*,2n1, 21【答案】解:(1)设G是AA1的中点,连接GE,BGE为DD1的中点,ABCDA1B1C1D1为正方体,GEAD,又AD平面ABB1A1,GE平面ABB1A1,且斜线BE在平面ABB1A1内的射影为BG,RtBEG中的EBG是直线BE和平面ABB1A1所成角,即EBG=设正方体的棱长为,直线BE和平面ABB1A1所成角的正弦值为:;6分(2)证明:连接EF、AB1、C1D,记AB1与A1B的交点为H,连接EHH为AB1的中点,且B1H=C1D,B1HC1D,而EF=C1D,EFC1D,B1HEF且B1H=EF,四边形B1FEH为平行四边形,即B1FEH,又B1F平面A1BE且EH平面A1BE,B1F平面A1BE 12分22【答案】 【解析】解:(1)由,解得0x3A=0,3,由B=y|y=2x,1x2=2,4,(2)UA=(,0)3,+),(UA)B=(3,423【答案】(1)2或;(2)【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量的夹角为锐角的充要条件是且不共线,由此可得范围试题解析:(1)由,得或,当时,当时,.(2)与夹角为锐角,又因为时,所以的取值范围是.考点:向量平行的坐标运算,向量的模与数量积【名师点睛】由向量的数量积可得向量的夹角公式,当为锐角时,但当时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是且不同向,同样两向量夹角为钝角的充要条件是且不反向24【答案】 【解析】解:(1)因为抛物线y=2x24x+a开口向上,对称轴为x=1,所以函数f(x)在(,1上单调递减,在1,+)上单调递增,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论