




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新绛县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知集合,则A0或B0或3C1或D1或32 已知数列为等差数列,为前项和,公差为,若,则的值为( )A B C D3 =( )AiBiC1+iD1i4 设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)5 若P是以F1,F2为焦点的椭圆=1(ab0)上的一点,且=0,tanPF1F2=,则此椭圆的离心率为( )ABCD 6 数列an满足a1=3,ananan+1=1,An表示an前n项之积,则A2016的值为( )ABC1D17 设D、E、F分别是ABC的三边BC、CA、AB上的点,且=2, =2, =2,则与( )A互相垂直B同向平行C反向平行D既不平行也不垂直8 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A232B252C472D4849 如图所示,在平行六面体ABCDA1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则( ) Ax=Bx=Cx=Dx=10下列正方体或四面体中,、分别是所在棱的中点,这四个点不共面的一个图形是( )11定义:数列an前n项的乘积Tn=a1a2an,数列an=29n,则下面的等式中正确的是( )AT1=T19BT3=T17CT5=T12DT8=T1112集合U=R,A=x|x2x20,B=x|y=ln(1x),则图中阴影部分表示的集合是( )Ax|x1Bx|1x2Cx|0x1Dx|x1二、填空题13若函数在区间上单调递增,则实数的取值范围是_.14直线2x+3y+6=0与坐标轴所围成的三角形的面积为15已知关于的不等式的解集为,则关于的不等式的解集为_.16设集合A=x|x+m0,B=x|2x4,全集U=R,且(UA)B=,求实数m的取值范围为17【盐城中学2018届高三上第一次阶段性考试】函数f(x)=xlnx的单调减区间为 18【泰州中学2018届高三10月月考】设函数,其中,若存在唯一的整数,使得,则的取值范围是 三、解答题19(本小题满分10分)选修4-1:几何证明选讲1111如图,点为圆上一点,为圆的切线,为圆的直径,.(1)若交圆于点,求的长;(2)若连接并延长交圆于两点,于,求的长.20如图,四棱锥PABCD中,PD平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,求证:PCBC;()求三棱锥CDEG的体积;()AD边上是否存在一点M,使得PA平面MEG若存在,求AM的长;否则,说明理由 21已知数列an满足a1=a,an+1=(nN*)(1)求a2,a3,a4;(2)猜测数列an的通项公式,并用数学归纳法证明22如图所示的几何体中,EA平面ABC,BD平面ABC,AC=BC=BD=2AE=,M是AB的中点(1)求证:CMEM;(2)求MC与平面EAC所成的角23已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4()椭圆C的标准方程()已知P、Q是椭圆C上的两点,若OPOQ,求证:为定值()当为()所求定值时,试探究OPOQ是否成立?并说明理由 24甲、乙两位选手为为备战我市即将举办的“推广妈祖文化印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲8381937978848894乙8789897774788898()依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;()本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品答题顺序可自由选择,但答题失败则终止答题选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由新绛县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】,故或,解得或或,又根据集合元素的互异性,所以或。2 【答案】B【解析】试题分析:若为等差数列,则为等差数列公差为, ,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式.3 【答案】 B【解析】解: =i故选:B【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力4 【答案】C【解析】解: =f(x0),故选C【点评】本题考查了导数的几何意义,以及导数的极限表示形式,本题属于中档题5 【答案】A【解析】解:,即PF1F2是P为直角顶点的直角三角形RtPF1F2中,=,设PF2=t,则PF1=2t=2c,又根据椭圆的定义,得2a=PF1+PF2=3t此椭圆的离心率为e=故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题6 【答案】D【解析】解:a1=3,ananan+1=1,得,a4=3,数列an是以3为周期的周期数列,且a1a2a3=1,2016=3672,A2016 =(1)672=1故选:D7 【答案】D【解析】解:如图所示,ABC中, =2, =2, =2,根据定比分点的向量式,得=+,=+, =+,以上三式相加,得+=,所以,与反向共线【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目8 【答案】 C【解析】【专题】排列组合【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有=5601672=472故选C【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题9 【答案】A【解析】解:根据题意,得;=+(+)=+=+,又=+x+y,x=,y=,故选:A【点评】本题考查了空间向量的应用问题,是基础题目10【答案】D【解析】考点:平面的基本公理与推论11【答案】C【解析】解:an=29n,Tn=a1a2an=28+7+9n=T1=28,T19=219,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C12【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A(UB)A=x|x2x20=x|1x2,B=x|y=ln(1x)=x|1x0=x|x1,则UB=x|x1,则A(UB)=x|1x2故选:B【点评】本题主要考查Venn图表达 集合的关系和运算,比较基础二、填空题13【答案】【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即恒成立,可得,故答案为.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.14【答案】3 【解析】解:把x=0代入2x+3y+6=0可得y=2,把y=0代入2x+3y+6=0可得x=3,直线与坐标轴的交点为(0,2)和(3,0),故三角形的面积S=23=3,故答案为:3【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题15【答案】【解析】考点:一元二次不等式的解法.16【答案】m2 【解析】解:集合A=x|x+m0=x|xm,全集U=R,所以CUA=x|xm,又B=x|2x4,且(UA)B=,所以有m2,所以m2故答案为m217【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系18【答案】【解析】试题分析:设,由题设可知存在唯一的整数,使得在直线的下方.因为,故当时,函数单调递减; 当时,函数单调递增;故,而当时,故当且,解之得,应填答案.考点:函数的图象和性质及导数知识的综合运用【易错点晴】本题以函数存在唯一的整数零点,使得为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.三、解答题19【答案】(1);(2).【解析】试题分析:(1)由切线的性质可知,由相似三角形性质知,可得;(2)由切割线定理可得,求出,再由,求出的值. 1试题解析:(1)因为是圆的切线,是圆的直径,所以,所以,设,又因为,所以,所以,解得.考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质.20【答案】 【解析】解:(I)证明:PD平面ABCD,PDBC,又ABCD是正方形,BCCD,PDICE=D,BC平面PCD,又PC面PBC,PCBC(II)解:BC平面PCD,GC是三棱锥GDEC的高E是PC的中点,(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA平面MEG下面证明之:E为PC的中点,O是AC的中点,EO平面PA, 又EO平面MEG,PA平面MEG,PA平面MEG,在正方形ABCD中,O是AC中点,OCGOAM,所求AM的长为 【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想21【答案】 【解析】解:(1)由an+1=,可得a2=,a3=,a4=(2)猜测an=(nN*)下面用数学归纳法证明:当n=1时,左边=a1=a,右边=a,猜测成立假设当n=k(kN*)时猜测成立,即ak=则当n=k+1时,ak+1=故当n=k+1时,猜测也成立由,可知,对任意nN*都有an=成立22【答案】 【解析】(1)证明:AC=BC=AB,ABC为等腰直角三角形,M为AB的中点,AM=BM=CM,CMAB,EA平面ABC,EAAC,设AM=BM=CM=1,则有AC=,AE=AC=,在RtAEC中,根据勾股定理得:EC=,在RtAEM中,根据勾股定理得:EM=,EM2+MC2=EC2,CMEM;(2)解:过M作MNAC,可得MCA为MC与平面EAC所成的角,则MC与平面EAC所成的角为4523【答案】 【解析】(I)解:由题意可设椭圆的坐标方程为(ab0)离心率为,且椭圆C上一点到两个焦点的距离之和为4,2a=4,解得a=2,c=1b2=a2c2=3椭圆C的标准方程为(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=x(k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=为定值当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立因此=为定值(III)当=定值时,试探究OPOQ是否成立?并说明理由OPOQ不一定成立下面给出证明证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则=,满足条件当直线OP或OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=kx(kk,k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=化为(kk)2=1,kk=1OPOQ或kk=1因此OPOQ不一定成立【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题24【答案】 【解析】解:(I)记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、,因为,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加(II)记事件C表示为“甲回答问题A成功”,事件D表示为“甲回答问题B成功”,则P(C)=,P(D)=,且事件C与事件D相互独立 记甲按AB顺序获得奖品价值为,则的可能取值为0,100,400P(=0)=P()=,P(=100)=P()=,P(=400)=P(CD)=即的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文化创意产业资金申请项目申报技巧与实施策略报告
- 2025年行政窗口办事员考试题库及答案
- 工业互联网平台NFV虚拟化网络功能在机器人领域的应用与案例分析报告
- 西安市汉都第一学校招聘笔试真题2024
- 2025-2030港口自动驾驶集卡商业化进程报告
- 鸡西市老干部服务中心招聘笔试真题2024
- 2025-2030气凝胶超级保温材料在绿色建筑中的成本下降曲线与政策红利
- 2024年江西抚州高新区招聘教师真题
- 2025-2030机床企业科创板上市路径与估值逻辑分析
- 2020-2025年初级银行从业资格之初级风险管理提升训练试卷B卷附答案
- 5.1 延续文化血脉 (导学案) 2024-2025学年统编版道德与法治九年级上册
- 三甲医院临床试验机构-31 V00 专业组备案及考核SOP
- 电缆相关项目实施方案
- 山东畜产品质量安全检测(抽样员)职业技能竞赛理论考试题及答案
- (新版)区块链应用操作员职业技能竞赛理论考试题库-下(多选、判断题)
- 部编人教版九年级道德与法治上册教材
- 短视频创意内容定制合同
- 关节松动技术-下肢关节松动术(运动治疗技术)
- 棋牌室入股合伙人协议书
- 《租船问题》教学设计及说课稿
- 儿童之家实施可行性方案
评论
0/150
提交评论