




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题一 函数与导数、不等式 第4讲 导数与函数的切线及函数零点问题训练 文一、选择题1.曲线yxex1在点(0,1)处的切线方程是()A.xy10 B.2xy10C.xy10 D.x2y20解析yexxex(x1)ex,y|x01,所求切线方程为:xy10.答案A2.(2016昆明诊断)曲线ye2x1在点(0,2)处的切线与直线y0和yx围成的三角形的面积为()A. B. C. D.1解析因为y2e2x,曲线在点(0,2)处的切线斜率k2,切线方程为y2x2,该直线与直线y0和yx围成的三角形如图所示,其中直线y2x2与yx的交点为A,所以三角形面积S1.答案A3.(2016洛阳模拟)曲线yxln x在点(e,e)处的切线与直线xay1垂直,则实数a的值为()A.2 B.2 C. D.解析依题意得y1ln x,y|xe1ln e2,所以21,所以a2,故选A.答案A4.已知yf(x)为R上的可导函数,当x0时,f(x)0,若g(x)f(x),则函数g(x)的零点个数为()A.1 B.2 C.0 D.0或2解析令h(x)xf(x),因为当x0时,0,所以0,因此当x0时,h(x)0,当x0时,h(x)0,又h(0)0,易知当x0时,h(x)0,又g(x),所以g(x)0,故函数g(x)的零点个数为0.答案C5.(2016山东卷)若函数yf(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称yf(x)具有T性质.下列函数中具有T性质的是()A.ysin x B.yln xC.yex D.yx3解析对函数ysin x求导,得ycos x,当x0时,该点处切线l1的斜率k11,当x时,该点处切线l2的斜率k21,k1k21,l1l2;对函数yln x求导,得y恒大于0,斜率之积不可能为1;对函数yex求导,得yex恒大于0,斜率之积不可能为1;对函数yx3,得y3x2恒大于等于0,斜率之积不可能为1.故选A.答案A二、填空题6.(2015全国卷)已知曲线yxln x在点(1,1)处的切线与曲线yax2(a2)x1相切,则a_.解析由yxln x,得y1,得曲线在点(1,1)的切线的斜率为ky|x12,所以切线方程为y12(x1),即y2x1,此切线与曲线yax2(a2)x1相切,消去y得ax2ax20,得a0且a28a0,解得a8.答案87.函数f(x)x3x23x1的图象与x轴的交点个数是_.解析f(x)x22x3(x1)(x3),函数f(x)在(,1)和(3,)上是增函数,在(1,3)上是减函数,由f(x)极小值f(3)100,f(x)极大值f(1)0知函数f(x)的图象与x轴的交点个数为3.答案38.(2016西安模拟)关于x的方程x33x2a0有三个不同的实数解,则实数a的取值范围是_.解析由题意知使函数f(x)x33x2a的极大值大于0且极小值小于0即可,又f(x)3x26x3x(x2),令f(x)0,得x10,x22.当x0时,f(x)0;当0x2时,f(x)0;当x2时,f(x)0,所以当x0时,f(x)取得极大值,即f(x)极大值f(0)a;当x2时,f(x)取得极小值,即f(x)极小值f(2)4a,所以解得4a0.答案(4,0)三、解答题9.(2016武汉模拟)已知函数f(x)2ln xx2ax(aR).(1)当a2时,求f(x)的图象在x1处的切线方程;(2)若函数g(x)f(x)axm在上有两个零点,求实数m的取值范围.解(1)当a2时,f(x)2ln xx22x,f(x)2x2,切点坐标为(1,1),切线的斜率kf(1)2,则切线方程为y12(x1),即y2x1.(2)g(x)2ln xx2m,则g(x)2x.因为x,所以当g(x)0时,x1.当x1时,g(x)0;当1xe时,g(x)0.故g(x)在x1处取得极大值g(1)m1.又gm2,g(e)m2e2,g(e)g4e20,则g(e)g,所以g(x)在上的最小值是g(e).g(x)在上有两个零点的条件是解得1m2,所以实数m的取值范围是.10.(2016北京卷)设函数f(x)x3ax2bxc.(1)求曲线yf(x)在点(0,f(0)处的切线方程;(2)设ab4,若函数f(x)有三个不同零点,求c的取值范围;(3)求证:a23b0是f(x)有三个不同零点的必要而不充分条件.(1)解由f(x)x3ax2bxc,得f(x)3x22axb,切线斜率kf(0)b.又f(0)c,所以切点坐标为(0,c).所以所求切线方程为ycb(x0),即bxyc0.(2)解由ab4得f(x)x34x24xcf(x)3x28x4(3x2)(x2)令f(x)0,得(3x2)(x2)0,解得x2或x,f(x),f(x)随x的变化情况如下:x(,2)2f(x)00f(x)cc所以,当c0且c0时,存在x1(,2),x2,x3,使得f(x1)f(x2)f(x3)0.由f(x)的单调性知,当且仅当c时,函数f(x)x34x24xc有三个不同零点.(3)证明当4a212b0时,即a23b0,f(x)3x22axb0,x(,),此时函数f(x)在区间(,)上单调递增,所以f(x)不可能有三个不同零点.当4a212b0时,f(x)3x22axb只有一个零点,记作x0.当x(,x0)时,f(x)0,f(x)在区间(,x0)上单调递增;当x(x0,)时,f(x)0,f(x)在区间(x0,)上单调递增.所以f(x)不可能有三个不同零点.综上所述,若函数f(x)有三个不同零点,则必有4a212b0,故a23b0是f(x)有三个不同零点的必要条件.当ab4,c0时,a23b0,f(x)x34x24xx(x2)2只有两个不同零点,所以a23b0不是f(x)有三个不同零点的充分条件.因此a23b0是f(x)有三个不同零点的必要而不充分条件.11.设函数f(x)(xa)ln x,g(x). 已知曲线yf(x) 在点(1,f(1)处的切线与直线2xy0平行.(1)求a的值;(2)是否存在自然数k,使得方程f(x)g(x)在(k,k1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(3)设函数m(x)minf(x),g(x)(minp,q表示p,q中的较小值),求m(x)的最大值.解(1)由题意知,曲线yf(x)在点(1,f(1)处的切线斜率为2,所以f(1)2,又f(x)ln x1,所以a1.(2)k1时,方程f(x)g(x)在(1,2)内存在唯一的根.设h(x)f(x)g(x)(x1)ln x,当x(0,1时,h(x)0.又h(2)3ln 2ln 8110,所以存在x0(1,2),使得h(x0)0.因为h(x)ln x1,所以当x(1,2)时,h(x)10,当x2,)时,h(x)0,所以当x(1,)时,h(x)单调递增,所以k1时,方程f(x)g(x)在(k,k1)内存在唯一的根.(3)由(2)知方程f(x)g(x)在(1,2)内存在唯一的根x0.且x(0,x0)时,f(x)g(x),x(x0,)时,f(x)g(x),所以m(x)当x(0,x0时,若x(0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土地公司员工管理制度
- 内衣工厂日常管理制度
- 工厂食堂餐馆管理制度
- 民企仓库整改方案(3篇)
- 养老院洗衣机管理制度
- 别墅阁楼修建方案(3篇)
- 公安巡防归谁管理制度
- 财税业务筹划方案(3篇)
- 工厂仓库部门管理制度
- 医院物资收纳管理制度
- 北京市专业技术类职业资格培训服务合同
- 唇腭裂儿童的语音干预与治疗
- FSSC22000 食品安全管理体系管理手册和全套程序文件
- HY∕T 0289-2020 海水淡化浓盐水排放要求
- 高校基建管理部门组织构成及管理模式研究
- 特种设备检验流程图
- (高清正版)T-CAGHP 021—2018泥石流防治工程设计规范(试行)
- 北京协和医院食物交换表
- 成都市零诊级高中毕业班摸底测试化学试题及答案
- 脱产学习证明
- 结节病ppt课件
评论
0/150
提交评论