新抚区一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
新抚区一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
新抚区一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
新抚区一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
新抚区一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新抚区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数满足,且,分别是上的偶函数和奇函数,若使得不等式恒成立,则实数的取值范围是( )A B C D2 设函数是的导数.某同学经过探究发现,任意一个三次函数都有对称中心,其中满足.已知函数,则( )A B C D11113 设函数f(x)是奇函数f(x)(xR)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是( )A(,2)(0,2)B(,2)(2,+)C(2,0)(2,+)D(2,0)(0,2)4 若cos()=,则cos(+)的值是( )ABCD5 已知空间四边形,、分别是、的中点,且,则( )A B C D6 与圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0都相切的直线有()A1条B2条C3条D4条7 设集合,则( )ABCD8 经过点且在两轴上截距相等的直线是( )A BC或 D或9 若关于的不等式的解集为,则参数的取值范围为( )A B C D【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.10若方程x2mx+3=0的两根满足一根大于1,一根小于1,则m的取值范围是( )A(2,+)B(0,2)C(4,+)D(0,4)11已知,若圆:,圆:恒有公共点,则的取值范围为( ).A B C D12已知函数f(x)的定义域为a,b,函数y=f(x)的图象如下图所示,则函数f(|x|)的图象是( )ABCD二、填空题13已知函数的三个零点成等比数列,则 .14已知定义在R上的奇函数满足,且时,则的值为 15已知函数y=f(x),xI,若存在x0I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0I,使得f(f(x0)=x0,则称x0为函数y=f(x)的稳定点则下列结论中正确的是(填上所有正确结论的序号),1是函数g(x)=2x21有两个不动点;若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;函数g(x)=2x21共有三个稳定点;若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同16如图,已知,是异面直线,点,且;点,且.若,分别是,的中点,则与所成角的余弦值是_.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.17已知条件p:x|xa|3,条件q:x|x22x30,且q是p的充分不必要条件,则a的取值范围是18一个正四棱台,其上、下底面均为正方形,边长分别为和,侧棱长为,则其表面积为_.三、解答题19已知定义在区间(0,+)上的函数f(x)满足f()=f(x1)f(x2)(1)求f(1)的值;(2)若当x1时,有f(x)0求证:f(x)为单调递减函数;(3)在(2)的条件下,若f(5)=1,求f(x)在3,25上的最小值20(本小题满分12分)如图, 矩形的两条对角线相交于点,边所在直线的方程为点在边所在直线上.(1)求边所在直线的方程;(2)求矩形外接圆的方程. 21已知ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求ABC的面积22已知,其中e是自然常数,aR()讨论a=1时,函数f(x)的单调性、极值; ()求证:在()的条件下,f(x)g(x)+23(本小题满分12分)一直线被两直线截得线段的中点是点, 当点为时, 求此直线方程.24从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?新抚区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】试题分析:因为函数满足,且分别是上的偶函数和奇函数, 使得不等式恒成立, 即恒成立, , 设,则函数在上单调递增, 此时不等式,当且仅当,即时, 取等号,故选B. 考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题不等式恒成立问题常见方法:分离参数恒成立(即可)或恒成立(即可);数形结合;讨论最值或恒成立;讨论参数 .本题是利用方法求得的最大值的. 2 【答案】D【解析】 ,故选D. 1考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数都有对称中心”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出的对称中心后再利用对称性和的.第卷(非选择题共90分)3 【答案】A【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是增函数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:0x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(,2)(0,2)故选:A4 【答案】B【解析】解:cos()=,cos(+)=cos=cos()=故选:B5 【答案】A【解析】试题分析:取的中点,连接,根据三角形中两边之和大于第三边,两边之差小于第三边,所以,故选A考点:点、线、面之间的距离的计算1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题6 【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数【解答】解:圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0的方程可化为,;圆C1,C2的圆心分别为(3,2),(7,1);半径为r1=1,r2=6两圆的圆心距=r2r1;两个圆外切,它们只有1条内公切线,2条外公切线故选C7 【答案】C【解析】送分题,直接考察补集的概念,故选C。8 【答案】D【解析】考点:直线的方程.9 【答案】A 10【答案】C【解析】解:令f(x)=x2mx+3,若方程x2mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1m+30,解得:m(4,+),故选:C【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档11【答案】C 【解析】由已知,圆的标准方程为,圆的标准方程为 , ,要使两圆恒有公共点,则,即 ,解得或,故答案选C12【答案】B【解析】解:y=f(|x|)是偶函数,y=f(|x|)的图象是由y=f(x)把x0的图象保留,x0部分的图象关于y轴对称而得到的故选B【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f(x)的图象和函数f(|x|)的图象之间的关系,函数y=f(x)的图象和函数|f(x)|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题二、填空题13【答案】考点:三角函数的图象与性质,等比数列的性质,对数运算【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题14【答案】【解析】1111试题分析:,所以考点:利用函数性质求值15【答案】 【解析】解:对于,令g(x)=x,可得x=或x=1,故正确;对于,因为f(x0)=x0,所以f(f(x0)=f(x0)=x0,即f(f(x0)=x0,故x0也是函数y=f(x)的稳定点,故正确;对于,g(x)=2x21,令2(2x21)21=x,因为不动点必为稳定点,所以该方程一定有两解x=,1,由此因式分解,可得(x1)(2x+1)(4x2+2x1)=0还有另外两解,故函数g(x)的稳定点有,1,其中是稳定点,但不是不动点,故错误;对于,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0)=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0y0,因为y=f(x)是增函数,则f(x0)f(y0),即y0x0,与假设矛盾;假设x0y0,因为y=f(x)是增函数,则f(x0)f(y0),即y0x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故正确故答案为:【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力16【答案】【解析】17【答案】0,2 【解析】解:命题p:|xa|3,解得a3xa+3,即p=(a3,a+3);命题q:x22x30,解得1x3,即q=(1,3)q是p的充分不必要条件,qp,解得0a2,则实数a的取值范围是0,2故答案为:0,2【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题18【答案】【解析】考点:棱台的表面积的求解.三、解答题19【答案】 【解析】解:(1)令x1=x20,代入得f(1)=f(x1)f(x1)=0,故f(1)=0(4分)(2)证明:任取x1,x2(0,+),且x1x2,则1,由于当x1时,f(x)0,所以f()0,即f(x1)f(x2)0,因此f(x1)f(x2),所以函数f(x)在区间(0,+)上是单调递减函数(8分)(3)因为f(x)在(0,+)上是单调递减函数,所以f(x)在3,25上的最小值为f(25)由f()=f(x1)f(x2)得,f(5)=f()=f(25)f(5),而f(5)=1,所以f(25)=2即f(x)在3,25上的最小值为2(12分)【点评】本题主要考查抽象函数的应用,利用赋值法以及函数单调性的定义是解决本题的关键20【答案】(1);(2)【解析】试题分析:(1)由已知中边所在直线方程为,且与垂直,结合点在直线上,可得到边所在直线的点斜式方程,即可求得边所在直线的方程;(2)根据矩形的性质可得矩形外接圆圆心纪委两条直线的交点,根据(1)中直线,即可得到圆的圆心和半径,即可求得矩形外接圆的方程.(2)由解得点的坐标为,因为矩形两条对角线的交点为,所以为距形外接圆的圆心, 又,从而距形外接圆的方程为.1考点:直线的点斜式方程;圆的方程的求解.【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中边所在的直线方程以及与垂直,求出直线的斜率;(2)中的关键是求出点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力.21【答案】 【解析】解:由题意设a=n、b=n+1、c=n+2(nN+),最大角是最小角的2倍,C=2A,由正弦定理得,则,得cosA=,由余弦定理得,cosA=,=,化简得,n=4,a=4、b=5、c=6,cosA=,又0A,sinA=,ABC的面积S=【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题22【答案】 【解析】解:(1)a=1时,因为f(x)=xlnx,f(x)=1,当0x1时,f(x)0,此时函数f(x)单调递减当1xe时,f(x)0,此时函数f(x)单调递增所以函数f(x)的极小值为f(1)=1(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e上的最小值为1又g(x)=,所以当0xe时,g(x)0,此时g(x)单调递增所以g(x)的最大值为g(e)=,所以f(x)ming(x)max,所以在(1)的条件下,f(x)g(x)+【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题23【答案】【解析】试题分析:设所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论