




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷徐汇区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 定义在1,+)上的函数f(x)满足:当2x4时,f(x)=1|x3|;f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c的值是( )A1B2C或3D1或22 已知直线x+ay1=0是圆C:x2+y24x2y+1=0的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则|AB|=( )A2B6C4D23 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红、黑球各一个4 数列1,的前100项的和等于( )ABCD5 是平面内不共线的两向量,已知,若三点共线,则的值是( )A1 B2 C-1 D-26 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A BC D7 “为真”是“为假”的( )条件A充分不必要 B必要不充分 C充要 D既不充分也不必要8 若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是( )ABCD9 实数x,y满足不等式组,则下列点中不能使u=2x+y取得最大值的是( )A(1,1)B(0,3)C(,2)D(,0)10某程序框图如图所示,则输出的S的值为( )A11B19C26D5711下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A B C D12A=x|x1,B=x|x2或x0,则AB=( )A(0,1) B(,2)C(2,0) D(,2)(0,1)二、填空题13抛物线y2=4x的焦点为F,过F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则AF的长为14已知点F是抛物线y2=4x的焦点,M,N是该抛物线上两点,|MF|+|NF|=6,M,N,F三点不共线,则MNF的重心到准线距离为15袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为16定义在上的函数满足:,则不等式(其中为自然对数的底数)的解集为 .17“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负现在甲乙丙三人一起玩“黑白配”游戏设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是18圆柱形玻璃杯高8cm,杯口周长为12cm,内壁距杯口2cm的点A处有一点蜜糖A点正对面的外壁(不是A点的外壁)距杯底2cm的点B处有一小虫若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少cm(不计杯壁厚度与小虫的尺寸)三、解答题19如图,在平面直角坐标系xOy中,以x为始边作两个锐角,它们的终边分别与单位圆交于A,B两点已知A,B的横坐标分别为,(1)求tan(+)的值; (2)求2+的值20如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EFAD,平面ADEF平面ABCD,且BC=2EF,AE=AF,点G是EF的中点()证明:AG平面ABCD;()若直线BF与平面ACE所成角的正弦值为,求AG的长21在平面直角坐标系中,ABC各顶点的坐标分别为:A(0,4);B(3,0),C(1,1)(1)求点C到直线AB的距离;(2)求AB边的高所在直线的方程22在极坐标系中,圆C的极坐标方程为:2=4(cos+sin)6若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系()求圆C的参数方程;()在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标 23已知和均为给定的大于1的自然数,设集合,.,集合.。,.,.(1)当,时,用列举法表示集合;(2)设、,.。,.。,其中、,.,.证明:若,则.24计算下列各式的值:(1)(2)(lg5)2+2lg2(lg2)2徐汇区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:当2x4时,f(x)=1|x3|当1x2时,22x4,则f(x)=f(2x)=(1|2x3|),此时当x=时,函数取极大值;当2x4时,f(x)=1|x3|;此时当x=3时,函数取极大值1;当4x8时,24,则f(x)=cf()=c(1|3|),此时当x=6时,函数取极大值c函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,=,解得c=1或2故选D【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键2 【答案】B【解析】解:圆C:x2+y24x2y+1=0,即(x2)2+(y1)2 =4,表示以C(2,1)为圆心、半径等于2的圆由题意可得,直线l:x+ay1=0经过圆C的圆心(2,1),故有2+a1=0,a=1,点A(4,1)AC=2,CB=R=2,切线的长|AB|=6故选:B【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题3 【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题4 【答案】A【解析】解:=1故选A5 【答案】B【解析】考点:向量共线定理6 【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。故答案为:B7 【答案】B【解析】试题分析:因为假真时,真,此时为真,所以,“ 真”不能得“为假”,而“为假”时为真,必有“ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用.8 【答案】 A【解析】解:椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,圆的半径,由,得2cb,再平方,4c2b2,在椭圆中,a2=b2+c25c2,;由,得b+2c2a,再平方,b2+4c2+4bc4a2,3c2+4bc3a2,4bc3b2,4c3b,16c29b2,16c29a29c2,9a225c2,综上所述,故选A9 【答案】 D【解析】解:由题意作出其平面区域,将u=2x+y化为y=2x+u,u相当于直线y=2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=32x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=32x上但不在阴影区域内,故不成立;故选D【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题10【答案】C【解析】解:模拟执行程序框图,可得S=1,k=1k=2,S=4不满足条件k3,k=3,S=11不满足条件k3,k=4,S=26满足条件k3,退出循环,输出S的值为26故选:C【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的k,S的值是解题的关键,属于基本知识的考查11【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2故答案为:C12【答案】D【解析】解:A=(,1),B=(,2)(0,+),AB=(,2)(0,1),故选:D【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键二、填空题13【答案】4 【解析】解:由已知可得直线AF的方程为y=(x1),联立直线与抛物线方程消元得:3x210x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4故答案为:4【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题14【答案】 【解析】解:F是抛物线y2=4x的焦点,F(1,0),准线方程x=1,设M(x1,y1),N(x2,y2),|MF|+|NF|=x1+1+x2+1=6,解得x1+x2=4,MNF的重心的横坐标为,MNF的重心到准线距离为故答案为:【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离15【答案】 【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P=,根据条件概率公式,得:P2=,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键16【答案】【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即,因此构造函数,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令也可以求解.117【答案】 【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目18【答案】10cm 【解析】解:作出圆柱的侧面展开图如图所示,设A关于茶杯口的对称点为A,则AA=4cm,BC=6cm,AC=8cm,AB=10cm故答案为:10【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决三、解答题19【答案】 【解析】解:(1)由已知得:,为锐角,(2),为锐角,20【答案】 【解析】(本小题满分12分)()证明:因为AE=AF,点G是EF的中点,所以AGEF又因为EFAD,所以AGAD因为平面ADEF平面ABCD,平面ADEF平面ABCD=AD,AG平面ADEF,所以AG平面ABCD()解:因为AG平面ABCD,ABAD,所以AG、AD、AB两两垂直以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系则A(0,0,0),B(4,0,0),C(4,4,0),设AG=t(t0),则E(0,1,t),F(0,1,t),所以=(4,1,t),=(4,4,0),=(0,1,t)设平面ACE的法向量为=(x,y,z),由=0, =0,得,令z=1,得=(t,t,1)因为BF与平面ACE所成角的正弦值为,所以|cos|=,即=,解得t2=1或所以AG=1或AG=【点评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用21【答案】 【解析】解(1),根据直线的斜截式方程,直线AB:,化成一般式为:4x3y+12=0,根据点到直线的距离公式,点C到直线AB的距离为;(2)由(1)得直线AB的斜率为,AB边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y7=0,AB边的高所在直线的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郑州十九大题目及答案
- 2025年留置辅警面试题及答案
- 2025年中海油入职考试试题及答案
- 2025年政务公开面试题及答案
- 燃气储存站项目规划设计方案
- 2025年中药学药材辨识质量评价考察试卷答案及解析
- 2025年床边护理常见问题解决方案模拟考试答案及解析
- 中华文化礼仪考试试题及答案
- 2025年康复理疗技术操作演练答案及解析
- 中国文化旅游试卷及答案
- 《Sketch up效果图制作》课件-sketch up界面操作
- 2024-2025年全国初中化学竞赛试卷及答案
- 《发动机大修》课件
- 外研社小学英语五年级上册单词表
- 经济数学全套教学课件
- GB/T 43355-2023塑料和其他无孔材料表面抗病毒活性的测定
- 项目式学习的理论与实践探究
- 凤庆县新华乡瓦屋地区铜及多金属矿勘探附属设施建设项目环评报告
- 中建“大商务”管理实施方案
- 中公中学教育知识与能力教材电子版
- 出国留学高中成绩单最强模板
评论
0/150
提交评论