




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
铜山区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 ABC的外接圆圆心为O,半径为2, +=,且|=|,在方向上的投影为( )A3BCD32 函数f(x)=x33x2+5的单调减区间是( )A(0,2) B(0,3) C(0,1) D(0,5)3 若,则不等式成立的概率为( )A B C D4 三个数60.5,0.56,log0.56的大小顺序为( )Alog0.560.5660.5Blog0.5660.50.56C0.5660.5log0.56D0.56log0.5660.5 5 函数是周期为4的奇函数,且在上的解析式为,则( )A B C D【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力6 若某程序框图如图所示,则该程序运行后输出的值是( )A. B.C. D. 【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.7 设集合,集合,若 ,则的取值范围( )A B C. D8 若命题“p或q”为真,“非p”为真,则( )Ap真q真Bp假q真Cp真q假Dp假q假9 函数y=x+xlnx的单调递增区间是( )A(0,e2)B(e2,+)C(,e2)D(e2,+)10过点P(2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有( )A3条B2条C1条D0条11一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )ABCD12在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是()A最多可以购买4份一等奖奖品 B最多可以购买16份二等奖奖品C购买奖品至少要花费100元 D共有20种不同的购买奖品方案二、填空题13若数列an满足:存在正整数T,对于任意的正整数n,都有an+T=an成立,则称数列an为周期为T的周期数列已知数列an满足:a1=m (ma ),an+1=,现给出以下三个命题:若 m=,则a5=2;若 a3=3,则m可以取3个不同的值;若 m=,则数列an是周期为5的周期数列其中正确命题的序号是14函数的定义域是,则函数的定义域是_.11115已知函数,则_;的最小值为_16若直线ykx1=0(kR)与椭圆恒有公共点,则m的取值范围是17设函数f(x)=则函数y=f(x)与y=的交点个数是18已知平面上两点M(5,0)和N(5,0),若直线上存在点P使|PM|PN|=6,则称该直线为“单曲型直线”,下列直线中:y=x+1 y=2 y=x y=2x+1是“单曲型直线”的是三、解答题19设函数f(x)=emx+x2mx(1)证明:f(x)在(,0)单调递减,在(0,+)单调递增;(2)若对于任意x1,x2,都有|f(x1)f(x2)|e1,求m的取值范围 20已知抛物线C:x2=2py(p0),抛物线上一点Q(m,)到焦点的距离为1()求抛物线C的方程()设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(nN*)()记AOB的面积为f(n),求f(n)的表达式()探究是否存在不同的点A,使对应不同的AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由21已知等差数列的公差,()求数列的通项公式;()设,记数列前n项的乘积为,求的最大值22现有5名男生和3名女生(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?23已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由24如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2()证明ADBE;()求多面体EFABCD体积的最大值铜山区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:由题意, +=,得到,又|=|=|,OAB是等边三角形,所以四边形OCAB是边长为2的菱形,所以在方向上的投影为ACcos30=2=;故选C【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形OBAC的形状,利用向量解答2 【答案】A【解析】解:f(x)=x33x2+5,f(x)=3x26x,令f(x)0,解得:0x2,故选:A【点评】本题考察了函数的单调性,导数的应用,是一道基础题3 【答案】D【解析】考点:几何概型4 【答案】A【解析】解:60.560=1,00.560.50=1,log0.56log0.51=0log0.560.5660.5故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题5 【答案】C6 【答案】A【解析】运行该程序,注意到循环终止的条件,有n10,i1;n5,i2;n16,i3;n8,i4;n4,i5;n2,i6;n1,i7,到此循环终止,故选 A.7 【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键.8 【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,p假q真,故选:B【点评】本题考查了复合命题的真假的判断,是一道基础题9 【答案】B【解析】解:函数的定义域为(0,+)求导函数可得f(x)=lnx+2,令f(x)0,可得xe2,函数f(x)的单调增区间是(e2,+)故选B10【答案】C【解析】解:假设存在过点P(2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则即2a2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=ab=8,即ab=16,联立,解得:a=4,b=4直线l的方程为:,即xy+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题11【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1PF2又因为F1F2=2c,所以PF1F2=30,所以根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2ac所以2ac=,所以e=故选D【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义12【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16)在可行域内的整数点有:(2,6),(2,7),(2,16),(3,9),(3,10),(3,14),(4,12),共11+6+1=18个。其中,x最大为4,y最大为16最少要购买2份一等奖奖品,6份二等奖奖品,所以最少要花费100元。所以A、B、C正确,D错误。故答案为:D二、填空题13【答案】 【解析】解:对于由an+1=,且a1=m=1,所以,1,a5=2 故正确;对于由a3=3,若a3=a21=3,则a2=4,若a11=4,则a1=5=m若,则若a11a1=,若0a11则a1=3,不合题意所以,a3=2时,m即a1的不同取值由3个故正确;若a1=m=1,则a2=,所a3=1,a4=故在a1=时,数列an是周期为3的周期数列,错;故答案为:【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目14【答案】【解析】考点:函数的定义域.15【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为: 16【答案】1,5)(5,+) 【解析】解:整理直线方程得y1=kx,直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y轴上,而该椭圆关于原点对称,故只需要令x=0有5y2=5m得到y2=m要让点(0.1)在椭圆内或者椭圆上,则y1即是y21得到m1椭圆方程中,m5m的范围是1,5)(5,+)故答案为1,5)(5,+)【点评】本题主要考查了直线与圆锥曲线的综合问题本题采用了数形结合的方法,解决问题较为直观17【答案】4 【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4故答案为:418【答案】 【解析】解:|PM|PN|=6点P在以M、N为焦点的双曲线的右支上,即,(x0)对于,联立,消y得7x218x153=0,=(18)247(153)0,y=x+1是“单曲型直线”对于,联立,消y得x2=,y=2是“单曲型直线”对于,联立,整理得144=0,不成立不是“单曲型直线”对于,联立,消y得20x2+36x+153=0,=3624201530y=2x+1不是“单曲型直线”故符合题意的有故答案为:【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用三、解答题19【答案】 【解析】解:(1)证明:f(x)=m(emx1)+2x若m0,则当x(,0)时,emx10,f(x)0;当x(0,+)时,emx10,f(x)0若m0,则当x(,0)时,emx10,f(x)0;当x(0,+)时,emx10,f(x)0所以,f(x)在(,0)时单调递减,在(0,+)单调递增(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值所以对于任意x1,x2,|f(x1)f(x2)|e1的充要条件是即设函数g(t)=ette+1,则g(t)=et1当t0时,g(t)0;当t0时,g(t)0故g(t)在(,0)单调递减,在(0,+)单调递增又g(1)=0,g(1)=e1+2e0,故当t时,g(t)0当m时,g(m)0,g(m)0,即合式成立;当m1时,由g(t)的单调性,g(m)0,即emme1当m1时,g(m)0,即em+me1综上,m的取值范围是 20【答案】 【解析】解:()依题意得|QF|=yQ+=+=1,解得p=1,抛物线C的方程为x2=2y;()()直线l与抛物线C交于A、B两点,直线l的斜率存在,设A(x1,y1),B(x2,y2),直线l的方程为:y=kx+2,联立方程组,化简得:x22kx4=0,此时=(2k)241(4)=4(k2+4)0,由韦达定理,得:x1+x2=2k,x1x2=4,SAOB=|OM|x1x2|=2=2 (*)又A点横坐标为n,点A坐标为A(n,),又直线过点M(0,2),故k=,将上式代入(*)式,可得:f(n)=2=2=2=n+(nN*);()结论:当A点坐标为(1,)或(4,8)时,对应不同的AOB的面积相等理由如下:设存在不同的点Am(m,),An(n,)(mn,m、nN*),使对应不同的AOB的面积相等,则f(m)=f(n),即m+=n+,化简得:mn=,又mn,即mn0,1=,即mn=4,解得m=1,n=4或m=4,n=1,此时A点坐标为(1,),(4,8)【点评】本题考查抛物线的定义及其标准方程、直线与抛物线的位置关系、函数的性质等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程的思想、数形结合思想、化归与转化思想,注意解题方法的积累,属于中档题21【答案】【解析】【知识点】等差数列【试题解析】()由题意,得解得或(舍)所以()由(),得所以所以只需求出的最大值由(),得因为,所以当,或时,取到最大值所以的最大值为22【答案】 【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有 A33A66=4320种(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排23【答案】 【解析】解:(1)依题意,可设椭圆C的方程为(a0,b0),且可知左焦点为F(2,0),从而有,解得c=2,a=4,又a2=b2+c2,所以b2=12,故椭圆C的方程为(2)假设存在符合题意的直线l,其方程为y=x+t,由得3x2+3tx+t212=0,因为直线l与椭圆有公共点,所以有=(3t)243(t212)0,解得4t4,另一方面,由直线OA与l的距离4=,从而t=2,由于24,4,所以符合题意的直线l不存在【点评】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鞋店全年促销活动策划方案(3篇)
- 桥梁砌体施工方案(3篇)
- 仙居员工拓展活动策划方案(3篇)
- 河床栏杆维修施工方案(3篇)
- 新年摄影楼活动方案策划(3篇)
- 叠合池施工方案(3篇)
- 装修装饰专项施工方案(3篇)
- 消防温泉活动策划方案模板(3篇)
- 女神节烧烤活动方案策划(3篇)
- 安徽省宣城市宁国市2023-2024学年高三下学期高考第三次模拟考试思想政治考题及答案
- 中医培训课件:《气交灸的临床应用》
- 监理公司常用工具仪器技术手册
- 小学数学1-6年级公式大全(打印版)
- 华中科技大学青年长江学者答辩模板
- TCCSAS 007-2020化工企业变更管理实施规范
- 个人劳动合同书范本
- 手术室抢救药品应用
- 厦门国际港务股份有限公司薪酬考核体系及职业经理人机制、改革纲要汇报
- 幼儿园拍照培训
- T-CESA 1270.2-2023 信息技术 开源治理 第2部分:企业治理评估模型
- 软件对接方案
评论
0/150
提交评论