




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷海宁市第三中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 设集合 A= x|32x13,集合 B为函数 y=lg( x1)的定义域,则 AB=( )A(1,2)B1,2C1,2)D(1,22 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A程序流程图B工序流程图C知识结构图D组织结构图3 设=(1,2),=(1,1),=+k,若,则实数k的值等于( )ABCD4 四棱锥的底面为正方形,底面,若该四棱锥的所有顶点都在体积为同一球面上,则( )A3BCD【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力5 xR,x22x+30的否定是( )A不存在xR,使x22x+30BxR,x22x+30CxR,x22x+30DxR,x22x+306 在中,角、所对应的边分别为、,若角、依次成等差数列,且,,则等于( )ABCD27 等比数列an中,a4=2,a5=5,则数列lgan的前8项和等于( )A6B5C3D48 不等式的解集为( )A或BC或D9 若f(x)为定义在区间G上的任意两点x1,x2和任意实数(0,1),总有f(x1+(1)x2)f(x1)+(1)f(x2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )f(x)=,f(x)=,f(x)=,f(x)=A4B3C2D110设集合A=x|2x4,集合B=x|y=lg(x1),则AB等于( )A(1,2)B1,2C1,2)D(1,211向高为H的水瓶中注水,注满为止如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是( )ABCD12单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A该几何体体积为B该几何体体积可能为C该几何体表面积应为+D该几何体唯一二、填空题13设函数f(x)=,若a=1,则f(x)的最小值为;若f(x)恰有2个零点,则实数a的取值范围是14已知一个算法,其流程图如图,则输出结果是15等比数列an的前n项和为Sn,已知S3=a1+3a2,则公比q=16抛物线y2=8x上到焦点距离等于6的点的坐标是17【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间内,则正整数的值为_18已知i是虚数单位,复数的模为三、解答题19如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,()求C1、C2的方程;()记MAB,MDE的面积分别为S1、S2,若,求直线AB的方程20中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0p1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率()设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P(列代数式表示)()现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率21在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系已知直线l过点P(1,0),斜率为,曲线C:=cos2+8cos()写出直线l的一个参数方程及曲线C的直角坐标方程;()若直线l与曲线C交于A,B两点,求|PA|PB|的值 22等差数列an的前n项和为Sn,已知a1=10,a2为整数,且SnS4。(1)求an的通项公式;(2)设bn=,求数列bn的前n项和Tn。23函数f(x)=sin(x+)(0,|)的部分图象如图所示()求函数f(x)的解析式()在ABC中,角A,B,C所对的边分别是a,b,c,其中ac,f(A)=,且a=,b=,求ABC的面积24已知a,b,c分别为ABC三个内角A,B,C的对边,c=asinCccosA(1)求A;(2)若a=2,ABC的面积为,求b,c海宁市第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:由A中不等式变形得:22x4,即1x2,A=1,2,由B中y=lg(x1),得到x10,即x1,B=(1,+),则AB=(1,2,故选:D2 【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示故选D【点评】本题考查结构图和流程图的概念,是基础题解题时要认真审题,仔细解答3 【答案】A【解析】解: =(1,2),=(1,1),=+k=(1+k,2+k), =0,1+k+2+k=0,解得k=故选:A【点评】本题考查数量积和向量的垂直关系,属基础题4 【答案】B【解析】连结交于点,取的中点,连结,则,所以底面,则到四棱锥的所有顶点的距离相等,即球心,均为,所以由球的体积可得,解得,故选B5 【答案】C【解析】解:因为特称命题的否定是全称命题,所以,xR,x22x+30的否定是:xR,x22x+30故选:C6 【答案】C【解析】因为角、依次成等差数列,所以由余弦定理知,即,解得所以, 故选C答案:C 7 【答案】D【解析】解:等比数列an中a4=2,a5=5,a4a5=25=10,数列lgan的前8项和S=lga1+lga2+lga8=lg(a1a2a8)=lg(a4a5)4=4lg(a4a5)=4lg10=4故选:D【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查8 【答案】A【解析】令得,;其对应二次函数开口向上,所以解集为或,故选A答案:A 9 【答案】C【解析】解:由区间G上的任意两点x1,x2和任意实数(0,1),总有f(x1+(1)x2)f(x1)+(1)f(x2),等价为对任意xG,有f(x)0成立(f(x)是函数f(x)导函数的导函数),f(x)=的导数f(x)=,f(x)=,故在(2,3)上大于0恒成立,故为“上进”函数;f(x)=的导数f(x)=,f(x)=0恒成立,故不为“上进”函数;f(x)=的导数f(x)=,f(x)=0恒成立,故不为“上进”函数;f(x)=的导数f(x)=,f(x)=,当x(2,3)时,f(x)0恒成立故为“上进”函数故选C【点评】本题考查新定义的理解和运用,同时考查导数的运用,以及不等式恒成立问题,属于中档题10【答案】D【解析】解:A=x|2x4=x|x2,由x10得x1B=x|y=lg(x1)=x|x1AB=x|1x2故选D11【答案】 A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系如图所示,此时注水量V与容器容积关系是:V水瓶的容积的一半对照选项知,只有A符合此要求故选A【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想属于基础题12【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3(11)+3(11)+()2=故选:C【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键二、填空题13【答案】a1或a2 【解析】解:当a=1时,f(x)=,当x1时,f(x)=2x1为增函数,f(x)1,当x1时,f(x)=4(x1)(x2)=4(x23x+2)=4(x)21,当1x时,函数单调递减,当x时,函数单调递增,故当x=时,f(x)min=f()=1,设h(x)=2xa,g(x)=4(xa)(x2a)若在x1时,h(x)=与x轴有一个交点,所以a0,并且当x=1时,h(1)=2a0,所以0a2,而函数g(x)=4(xa)(x2a)有一个交点,所以2a1,且a1,所以a1,若函数h(x)=2xa在x1时,与x轴没有交点,则函数g(x)=4(xa)(x2a)有两个交点,当a0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2a0时,即a2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是a1,或a214【答案】5 【解析】解:模拟执行程序框图,可得a=1,a=2不满足条件a24a+1,a=3不满足条件a24a+1,a=4不满足条件a24a+1,a=5满足条件a24a+1,退出循环,输出a的值为5故答案为:5【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查15【答案】2 【解析】解:设等比数列的公比为q,由S3=a1+3a2,当q=1时,上式显然不成立;当q1时,得,即q23q+2=0,解得:q=2故答案为:2【点评】本题考查了等比数列的前n项和,考查了等比数列的通项公式,是基础的计算题16【答案】(4,) 【解析】解:抛物线方程为y2=8x,可得2p=8, =2抛物线的焦点为F(2,0),准线为x=2设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=m+2=6,解得m=4,n2=8m=32,可得n=4,因此,点P的坐标为(4,)故答案为:(4,)【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标着重考查了抛物线的定义与标准方程等知识,属于基础题17【答案】2【解析】18【答案】 【解析】解:复数=i1的模为=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,属于基础题三、解答题19【答案】 【解析】解:()椭圆C1:的离心率为,a2=2b2,令x2b=0可得x=,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长,2=2b,b=1,C1、C2的方程分别为,y=x21; ()设直线MA的斜率为k1,直线MA的方程为y=k1x1与y=x21联立得x2k1x=0x=0或x=k1,A(k1,k121)同理可得B(k2,k221)S1=|MA|MB|=|k1|k2|y=k1x1与椭圆方程联立,可得D(),同理可得E() S2=|MD|ME|= 若则解得或直线AB的方程为或【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键20【答案】 【解析】解:()由题意可知:XB(9,p),故EX=9p在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:通讯器械正常工作的概率P=;()当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作若前9个元素有4个正常工作,则它的概率为:此时后两个元件都必须正常工作,它的概率为: p2;若前9个元素有5个正常工作,则它的概率为:此时后两个元件至少有一个正常工作,它的概率为:;若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P=p2+,可得PP=p2+,=故当p=时,P=P,即增加2个元件,不改变通讯器械的有效率;当0p时,PP,即增加2个元件,通讯器械的有效率降低;当p时,PP,即增加2个元件,通讯器械的有效率提高【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目21【答案】 【解析】解:()直线l过点P(1,0),斜率为,直线l的一个参数方程为(t为参数);=cos2+8cos,(1cos2)=8cos,即得(sin)2=4cos,y2=4x,曲线C的直角坐标方程为y2=4x() 把代入y2=4x整理得:3t28t16=0,设点A,B对应的参数分别为t1,t2,则,【点评】本题考查了直线参数方程及其应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题 22【答案】【解析】(1)由a1=10,a2为整数,且SnS4得a40,a50,即10+3d0,10+4d0,解得d,d=3,an的通项公式为an=133n。(2)bn=,Tn=b1+b2+bn=(+)=()=。23【答案】 【解析】解:()由图象可知,T=4()=,=2,又x=时,2+=+2k,得=2k,(kZ)又|,=,f(x)=sin(2x)6分()由f(A)=,可得sin(2A)=,ac,A为锐角,2A(,),2A=,得A=,由余弦定理可得:a2=b2+c22bccosA,可得:7=3+c22,即:c23c4=0,c0,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农小蜂年度中国肉类生产及分布数据分析报告
- 2025年工业互联网平台SDN优化与5G通信技术在工业互联网中的应用报告
- 2025年农业灌溉用水高效利用与水资源优化配置报告
- 2025年绿色供应链管理在调味品制造业的应用与推广研究报告
- 智能矿山无人作业系统在煤炭开采中的应用研究与发展报告
- 2025年线下演出市场复苏后的经济效益与社会影响研究报告
- 基于区块链技术的2025年零售企业数字化供应链协同安全报告
- 06年司法局上半年工作总结
- 2025年装配式建筑部品部件生产流程优化与标准化创新案例分析报告
- 核电项目日常管理制度
- 智慧社区人脸识别门禁系统改造方案
- 小学生反洗钱知识讲座
- 痛风结石病人的术后护理
- 室内拆除及装修方案
- 养殖业技术知识培训课件
- 慢性伤口护理中的柔性可穿戴设备应用
- 学生心理健康一生一策档案表
- 2025年商洛柞水县城乡供水有限公司招聘笔试参考题库含答案解析
- 浙江首考2025年1月普通高等学校招生全国统考政治试题及答案
- 实训美容手术操作基本技术美容外科学概论讲解
- 学校消防安全管理与突发事件处置
评论
0/150
提交评论