




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷无锡市第三中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 阅读如下所示的程序框图,若运行相应的程序,则输出的的值是( )A39 B21 C81 D1022 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A80B40C60D203 已知实数,则点落在区域 内的概率为( )A. B.C. D. 【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.4 函数f(x)=3x+x3的零点所在的区间是( )A(0,1)B(1,2)C(2.3)D(3,4)5 “方程+=1表示椭圆”是“3m5”的( )条件A必要不充分B充要C充分不必要D不充分不必要6 已知i为虚数单位,则复数所对应的点在( )A第一象限B第二象限C第三象限D第四象限7 已知集合表示的平面区域为,若在区域内任取一点P(x,y),则点P的坐标满足不等式x2+y22的概率为( )ABCD8 若函数y=f(x)是y=3x的反函数,则f(3)的值是( )A0B1CD39 设曲线在点处的切线的斜率为,则函数的部分图象可以为( )A B C. D10下列命题正确的是( )A很小的实数可以构成集合.B集合与集合是同一个集合.C自然数集 中最小的数是.D空集是任何集合的子集.11已知集合(其中为虚数单位),则( )A B C D12己知y=f(x)是定义在R上的奇函数,当x0时,f(x)=x+2,那么不等式2f(x)10的解集是( )AB或CD或二、填空题13如图,已知,是异面直线,点,且;点,且.若,分别是,的中点,则与所成角的余弦值是_.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.14已知,若,则= 15椭圆+=1上的点到直线l:x2y12=0的最大距离为16曲线在点(3,3)处的切线与轴x的交点的坐标为17不等式的解集为R,则实数m的范围是 18当a0,a1时,函数f(x)=loga(x1)+1的图象恒过定点A,若点A在直线mxy+n=0上,则4m+2n的最小值是三、解答题19已知函数f(x)=ax22lnx()若f(x)在x=e处取得极值,求a的值;()若x(0,e,求f(x)的单调区间;() 设a,g(x)=5+ln,x1,x2(0,e,使得|f(x1)g(x2)|9成立,求a的取值范围 20函数f(x)=sin2x+sinxcosx(1)求函数f(x)的递增区间;(2)当x0,时,求f(x)的值域21已知函数f(x)=|2x1|+|2x+a|,g(x)=x+3(1)当a=2时,求不等式f(x)g(x)的解集;(2)设a,且当x,a时,f(x)g(x),求a的取值范围 22(本小题满分12分)ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线(1)求证:AD;(2)若A120,AD,求ABC的面积23已知Sn为等差数列an的前n项和,且a4=7,S4=16(1)求数列an的通项公式;(2)设bn=,求数列bn的前n项和Tn24已知函数(a0)是奇函数,并且函数f(x)的图象经过点(1,3),(1)求实数a,b的值;(2)求函数f(x)的值域 无锡市第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D111.Com【解析】试题分析:第一次循环:;第二次循环:;第三次循环:结束循环,输出故选D. 1考点:算法初步2 【答案】B【解析】解:要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,三年级要抽取的学生是200=40,故选:B【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果3 【答案】B【解析】4 【答案】A【解析】解:f(0)=20,f(1)=10,由零点存在性定理可知函数f(x)=3x+x3的零点所在的区间是(0,1)故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题5 【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即3m5且m1,此时3m5成立,即充分性成立,当m=1时,满足3m5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件即必要性不成立故“方程+=1表示椭圆”是“3m5”的充分不必要条件故选:C【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题6 【答案】A【解析】解: =1+i,其对应的点为(1,1),故选:A7 【答案】D【解析】解:作出不等式组对应的平面区域如图,则对应的区域为AOB,由,解得,即B(4,4),由,解得,即A(,),直线2x+y4=0与x轴的交点坐标为(2,0),则OAB的面积S=,点P的坐标满足不等式x2+y22区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y22的概率为=,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据几何概型的概率公式进行求解8 【答案】B【解析】解:指数函数的反函数是对数函数,函数y=3x的反函数为y=f(x)=log3x,所以f(9)=log33=1故选:B【点评】本题给出f(x)是函数y=3x(xR)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题9 【答案】A 【解析】试题分析:,为奇函数,排除B,D,令时,故选A. 1考点:1、函数的图象及性质;2、选择题“特殊值”法.10【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.11【答案】D【解析】考点:1.复数的相关概念;2.集合的运算12【答案】B【解析】解:因为y=f(x)为奇函数,所以当x0时,x0,根据题意得:f(x)=f(x)=x+2,即f(x)=x2,当x0时,f(x)=x+2,代入所求不等式得:2(x+2)10,即2x3,解得x,则原不等式的解集为x;当x0时,f(x)=x2,代入所求的不等式得:2(x2)10,即2x5,解得x,则原不等式的解集为0x,综上,所求不等式的解集为x|x或0x故选B二、填空题13【答案】【解析】14【答案】【解析】试题分析:因为,所以,又,因此,因为,所以,考点:指对数式运算15【答案】4 【解析】解:由题意,设P(4cos,2sin)则P到直线的距离为d=,当sin()=1时,d取得最大值为4,故答案为:416【答案】(,0) 【解析】解:y=,斜率k=y|x=3=2,切线方程是:y3=2(x3),整理得:y=2x+9,令y=0,解得:x=,故答案为:【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题17【答案】 【解析】解:不等式,x28x+200恒成立可得知:mx2+2(m+1)x+9x+40在xR上恒成立显然m0时只需=4(m+1)24m(9m+4)0,解得:m或m所以m故答案为:18【答案】2 【解析】解:整理函数解析式得f(x)1=loga(x1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=14m+2n2=2=2当且仅当4m=2n,即2m=n,即n=,m=时取等号4m+2n的最小值为2故答案为:2三、解答题19【答案】 【解析】解:() f(x)=2ax= 由已知f(e)=2ae=0,解得a=经检验,a=符合题意 () 1)当a0时,f(x)0,f(x)在(0,e上是减函数2)当a0时,若e,即,则f(x)在(0,)上是减函数,在(,e上是增函数;若e,即0a,则f(x)在0,e上是减函数综上所述,当a时,f(x)的减区间是(0,e,当a时,f(x)的减区间是,增区间是()当时,由()知f(x)的最小值是f()=1+lna;易知g(x)在(0,e上的最大值是g(e)=4lna;注意到(1+lna)(4lna)=5+2lna0,故由题设知,解得ae2故a的取值范围是(,e2) 20【答案】 【解析】解:(1)(2分)令解得f(x)的递增区间为(6分)(2),(8分),(10分)f(x)的值域是(12分)【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力21【答案】 【解析】解:(1)由|2x1|+|2x+2|x+3,得:得x;得0x;得综上:不等式f(x)g(x)的解集为(2)a,x,a,f(x)=4x+a1由f(x)g(x)得:3x4a,即x依题意:,a(,a即a1a的取值范围是(,1 22【答案】【解析】解:(1)证明:D是BC的中点,BDDC.法一:在ABD与ACD中分别由余弦定理得c2AD22ADcosADB,b2AD22ADcosADC,得c2b22AD2,即4AD22b22c2a2,AD.法二:在ABD中,由余弦定理得AD2c22ccos Bc2ac,AD.(2)A120,AD,由余弦定理和正弦定理与(1)可得a2b2c2bc,2b22c2a219,联立解得b3,c5,a7,ABC的面积为Sbc sin A35sin 120.即ABC的面积为.23【答案】 【解析】解:(1)设等差数列an的公差为d,依题意得(2分)解得:a1=1,d=2an=2n1(2)由得(7分)(11分)(12分)【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司组织晚餐活动方案
- 公司梦想活动方案
- 公司春节布置活动方案
- 公司组织旅行活动方案
- 公司活动秋游活动方案
- 公司红酒品鉴活动方案
- 公司欢送仪式活动方案
- 公司系列大讲堂活动方案
- 公司母亲节日活动方案
- 公司水饺比赛活动方案
- 【学校心理健康教育系列】心理韧性:成为更坚韧的自己
- AI技术支持的学情分析
- 核电站sdm手册第7章
- JGJ-130-2011建筑施工扣件式钢管脚手架安全技术规范(新版)
- 鲁东教师心理健康期末考试复习题及参考答案
- 蛋白质纯化技术PPT幻灯片课件
- 企业部门人员需求申请表
- 手太阴肺经ppt课件
- 城市居住区规划设计规范(含条文说明)
- (完整版)《普通心理学-彭聃龄》知识要点
- 借款担保人担保承诺书
评论
0/150
提交评论