黄州区二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
黄州区二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
黄州区二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
黄州区二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
黄州区二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷黄州区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知正三棱柱的底面边长为,高为,则一质点自点出发,沿着三棱柱的侧面,绕行两周到达点的最短路线的长为( )A B C D2 在ABC中,a=1,b=4,C=60,则边长c=( )A13BCD213 已知全集U=R,集合M=x|2x12和N=x|x=2k1,k=1,2,的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A3个B2个C1个D无穷多个4 数列中,若,则这个数列的第10项( )A19B21CD5 如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则等( )ABCD6 已知幂函数y=f(x)的图象过点(,),则f(2)的值为( )ABC2D27 Sn是等差数列an的前n项和,若3a82a74,则下列结论正确的是( )AS1872 BS1976CS2080 DS21848 若某算法框图如图所示,则输出的结果为( )A7B15C31D639 已知集合A=0,1,2,则集合B=xy|xA,yA中元素的个数是( )A1B3C5D910已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(2015)=( )A2B2C8D811已知点M(6,5)在双曲线C:=1(a0,b0)上,双曲线C的焦距为12,则它的渐近线方程为( )Ay=xBy=xCy=xDy=x12若f(x)=sin(2x+),则“f(x)的图象关于x=对称”是“=”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件二、填空题13已知ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(cb)sinC,且bc=4,则ABC的面积为14命题“xR,x22x10”的否定形式是15若数列满足,则数列的通项公式为 .16某城市近10年居民的年收入x与支出y之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是亿元17一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是18如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是三、解答题19本小题满分10分选修:不等式选讲已知函数当时,求函数的定义域;若关于的不等式的解集是,求的取值范围 20已知关x的一元二次函数f(x)=ax2bx+1,设集合P=1,2,3Q=1,1,2,3,4,分别从集合P和Q中随机取一个数a和b得到数对(a,b)(1)列举出所有的数对(a,b)并求函数y=f(x)有零点的概率;(2)求函数y=f(x)在区间1,+)上是增函数的概率21(本小题满分10分)已知圆过点,.(1)若圆还过点,求圆的方程; (2)若圆心的纵坐标为,求圆的方程.22已知函数f(x)=ax3+2xa,()求函数f(x)的单调递增区间;()若a=n且nN*,设xn是函数fn(x)=nx3+2xn的零点(i)证明:n2时存在唯一xn且;(i i)若bn=(1xn)(1xn+1),记Sn=b1+b2+bn,证明:Sn1 23在20142015赛季CBA常规赛中,某篮球运动员在最近5场比赛中的投篮次数及投中次数如下表所示:2分球3分球第1场10投5中4投2中第2场13投5中5投2中第3场8投4中3投1中第4场9投5中3投0中第5场10投6中6投2中(1)分别求该运动员在这5场比赛中2分球的平均命中率和3分球的平均命中率;(2)视这5场比赛中2分球和3分球的平均命中率为相应的概率假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分分布列和数学期望24已知ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求ABC的面积黄州区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】考点:多面体的表面上最短距离问题【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题2 【答案】B【解析】解:a=1,b=4,C=60,由余弦定理可得:c=故选:B3 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为MN,又由M=x|2x12得1x3,即M=x|1x3,在此范围内的奇数有1和3所以集合MN=1,3共有2个元素,故选B4 【答案】C【解析】因为,所以,所以数列构成以为首项,2为公差的等差数列,通项公式为,所以,所以,故选C答案:C 5 【答案】C【解析】解:M、G分别是BC、CD的中点,=, =+=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为+,是解答本题的关键6 【答案】A【解析】解:设幂函数y=f(x)=x,把点(,)代入可得=,=,即f(x)=,故f(2)=,故选:A7 【答案】【解析】选B.3a82a74,3(a17d)2(a16d)4,即a19d4,S1818a118(a1d)不恒为常数S1919a119(a19d)76,同理S20,S21均不恒为常数,故选B.8 【答案】 D【解析】解:模拟执行算法框图,可得A=1,B=1满足条件A5,B=3,A=2满足条件A5,B=7,A=3满足条件A5,B=15,A=4满足条件A5,B=31,A=5满足条件A5,B=63,A=6不满足条件A5,退出循环,输出B的值为63故选:D【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题9 【答案】C【解析】解:A=0,1,2,B=xy|xA,yA,当x=0,y分别取0,1,2时,xy的值分别为0,1,2;当x=1,y分别取0,1,2时,xy的值分别为1,0,1;当x=2,y分别取0,1,2时,xy的值分别为2,1,0;B=2,1,0,1,2,集合B=xy|xA,yA中元素的个数是5个故选C10【答案】B【解析】解:f(x+4)=f(x),f(2015)=f(50441)=f(1),又f(x)在R上是奇函数,f(1)=f(1)=2故选B【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题11【答案】A【解析】解:点M(6,5)在双曲线C:=1(a0,b0)上,又双曲线C的焦距为12,12=2,即a2+b2=36,联立、,可得a2=16,b2=20,渐近线方程为:y=x=x,故选:A【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题12【答案】B【解析】解:若f(x)的图象关于x=对称,则2+=+k,解得=+k,kZ,此时=不一定成立,反之成立,即“f(x)的图象关于x=对称”是“=”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键二、填空题13【答案】 【解析】解:asinA=bsinB+(cb)sinC,由正弦定理得a2=b2+c2bc,即:b2+c2a2=bc,由余弦定理可得b2=a2+c22accosB,cosA=,A=60可得:sinA=,bc=4,SABC=bcsinA=故答案为:【点评】本题主要考查了解三角形问题考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题14【答案】 【解析】解:因为全称命题的否定是特称命题所以,命题“xR,x22x10”的否定形式是:故答案为:15【答案】 【解析】【解析】;故16【答案】18.2 【解析】解:某城市近10年居民的年收入x和支出y之间的关系大致是=0.9x+0.2,x=20,y=0.920+0.2=18.2(亿元)故答案为:18.2【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题17【答案】 【解析】解:由题意可得,2a,2b,2c成等差数列2b=a+c4b2=a2+2ac+c2b2=a2c2联立可得,5c2+2ac3a2=05e2+2e3=00e1故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题18【答案】异面 【解析】解:把展开图还原原正方体如图,在原正方体中直线AB与CD的位置关系是异面故答案为:异面三、解答题19【答案】【解析】当时,函数的定义域即为不等式的解集.来 由于,或, 或. 所以,无解,或. 综上,函数的定义域为若使的解集是,则只需恒成立.由于 所以的取值范围是.20【答案】 【解析】解:(1)(a,b)共有(1,1),(1,1),(1,2),(1,3),(1,4),(2,1),(2,1),(2,2),(2,3),(2,4),(31),(3,1),(3,2),(3,3),(3,4),15种情况函数y=f(x)有零点,=b24a0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况满足条件所以函数y=f(x)有零点的概率为(2)函数y=f(x)的对称轴为,在区间1,+)上是增函数则有,(1,1),(1,1),(1,2),(2,1),(2,1),(2,2),(2,3),(2,4),(3,1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件所以函数y=f(x)在区间1,+)上是增函数的概率为【点评】本题主要考查概率的列举法和二次函数的单调性问题对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视21【答案】(1);(2).【解析】试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程,将三点代入,求解圆的方程;(2)AB的垂直平分线过圆心,所以圆心的横坐标为,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.试题解析:(1)设圆的方程是,则由已知得,解得故圆的方程为.(2)由圆的对称性可知,圆心的横坐标为,故圆心,故圆的半径,故圆的标准方程为.考点:圆的方程22【答案】 【解析】解:()f(x)=3ax2+2,若a0,则f(x)0,函数f(x)在R上单调递增;若a0,令f(x)0,或,函数f(x)的单调递增区间为和;()(i)由()得,fn(x)=nx3+2xn在R上单调递增,又fn(1)=n+2n=20,fn()=当n2时,g(n)=n2n10,n2时存在唯一xn且(i i)当n2时,(零点的区间判定),(数列裂项求和),又f1(x)=x3+2x1,(函数法定界),又,(不等式放缩技巧)命题得证【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题 23【答案】 【解析】解:(1)该运动员在这5场比赛中2分球的平均命中率为:=,3分球的命中率为: =(2)依题意,该运动员投一次2分球命中的概率和投一次3分球命中的概率分别为,的可能取值为0,2,3,5,P(=0)=(1)(1)=,P(=2)=,P(=3)=(1)=,P(=5)=,该运动员在最后1分钟内得分的分布列为: 0 2 3 5 P该运动员最后1分钟内得分的数学期望为E=2【点评】本题考查相互独立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论