




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
色达县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若集合M=y|y=2x,x1,N=x|0,则 NM( )A(11,B(0,1C1,1D(1,22 若函数f(x)=loga(2x2+x)(a0且a1)在区间(0,)内恒有f(x)0,则f(x)的单调递增区间为( )A(,)B(,+)C(0,+)D(,)3 已知,满足不等式则目标函数的最大值为( )A3 B C12 D154 若函数在上单调递增,则实数的取值范围为( )A BC. D5 空间直角坐标系中,点A(2,1,3)关于点B(1,1,2)的对称点C的坐标为( )A(4,1,1)B(1,0,5)C(4,3,1)D(5,3,4)6 函数f(x)=sinx(0)在恰有11个零点,则的取值范围( )ACD时,函数f(x)的最大值与最小值的和为( )Aa+3B6C2D3a7 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )ABCD8 双曲线的焦点与椭圆的焦点重合,则m的值等于( )A12B20CD9 直角梯形中,直线截该梯形所得位于左边图形面积为,则函数的图像大致为( ) 10设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)11已知双曲线的方程为=1,则双曲线的离心率为( )ABC或D或12已知a为常数,则使得成立的一个充分而不必要条件是( )Aa0Ba0CaeDae二、填空题13设向量a(1,1),b(0,t),若(2ab)a2,则t_14某种产品的加工需要 A,B,C,D,E五道工艺,其中 A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有种(用数字作答)15若函数在区间上单调递增,则实数的取值范围是_.16过椭圆+=1(ab0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若F1PF2=60,则椭圆的离心率为17设幂函数的图象经过点,则= 18设,实数,满足,若,则实数的取值范围是_【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力三、解答题19设函数f(x)=x36x+5,xR()求f(x)的单调区间和极值;()若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围20已知命题p:方程表示焦点在x轴上的双曲线命题q:曲线y=x2+(2m3)x+1与x轴交于不同的两点,若pq为假命题,pq为真命题,求实数m的取值范围21已知函数f(x)=ax2+lnx(aR)(1)当a=时,求f(x)在区间1,e上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)g(x)f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”已知函数+2ax若在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围22啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(+)+1=r2(r0)()求直线l的普通方程和圆C的直角坐标方程;()若圆C上的点到直线l的最大距离为3,求r值 23(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下: 销售量/千克()求频率分布直方图中的的值,并估计每天销售量的中位数;()这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值24如图,在四棱锥PABCD中,底面ABCD为等腰梯形,ADBC,PA=AB=BC=CD=2,PD=2,PAPD,Q为PD的中点()证明:CQ平面PAB;()若平面PAD底面ABCD,求直线PD与平面AQC所成角的正弦值色达县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:由M中y=2x,x1,得到0y2,即M=(0,2,由N中不等式变形得:(x1)(x+1)0,且x+10,解得:1x1,即N=(1,1,则MN=(0,1,故选:B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键2 【答案】D【解析】解:当x(0,)时,2x2+x(0,1),0a1,函数f(x)=loga(2x2+x)(a0,a1)由f(x)=logat和t=2x2+x复合而成,0a1时,f(x)=logat在(0,+)上是减函数,所以只要求t=2x2+x0的单调递减区间t=2x2+x0的单调递减区间为(,),f(x)的单调增区间为(,),故选:D【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件3 【答案】C 考点:线性规划问题【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础(2)目标函数的意义,有的可以用直线在轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定4 【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式. 5 【答案】C【解析】解:设C(x,y,z),点A(2,1,3)关于点B(1,1,2)的对称点C,解得x=4,y=3,z=1,C(4,3,1)故选:C6 【答案】A【解析】ACD恰有11个零点,可得56,求得1012,故选:A7 【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P=,故选:B【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题8 【答案】A【解析】解:椭圆的焦点为(4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12故选:A9 【答案】C【解析】试题分析:由题意得,当时,当时,所以,结合不同段上函数的性质,可知选项C符合,故选C.考点:分段函数的解析式与图象.10【答案】C【解析】解: =f(x0),故选C11【答案】C【解析】解:双曲线的方程为=1,焦点坐标在x轴时,a2=m,b2=2m,c2=3m,离心率e=焦点坐标在y轴时,a2=2m,b2=m,c2=3m,离心率e=故选:C【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点12【答案】C【解析】解:由积分运算法则,得=lnx=lneln1=1因此,不等式即即a1,对应的集合是(1,+)将此范围与各个选项加以比较,只有C项对应集合(e,+)是(1,+)的子集原不等式成立的一个充分而不必要条件是ae故选:C【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题二、填空题13【答案】【解析】(2ab)a(2,2t)(1,1)21(2t)(1)4t2,t2.答案:214【答案】24 【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有482=24种,故答案为:24【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础15【答案】【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即恒成立,可得,故答案为.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.16【答案】 【解析】解:由题意知点P的坐标为(c,)或(c,),F1PF2=60,=,即2ac=b2=(a2c2)e2+2e=0,e=或e=(舍去)故答案为:【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题17【答案】【解析】试题分析:由题意得考点:幂函数定义18【答案】.【解析】三、解答题19【答案】 【解析】解:()当,f(x)的单调递增区间是,单调递减区间是当;当()由()的分析可知y=f(x)图象的大致形状及走向,当的图象有3个不同交点,即方程f(x)=有三解20【答案】 【解析】解:方程表示焦点在x轴上的双曲线,m2若p为真时:m2,曲线y=x2+(2m3)x+1与x轴交于不同的两点,则=(2m3)240m或m,若q真得:或,由复合命题真值表得:若pq为假命题,pq为真命题,p,q命题一真一假 若p真q假:; 若p假q真:实数m的取值范围为:或【点评】本题借助考查复合命题的真假判定,考查了双曲线的标准方程,关键是求得命题为真时的等价条件21【答案】 【解析】解:(1)当时,;对于x1,e,有f(x)0,f(x)在区间1,e上为增函数,(2)在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)f(x)f2(x)令0,对x(1,+)恒成立,且h(x)=f1(x)f(x)=0对x(1,+)恒成立,1)若,令p(x)=0,得极值点x1=1,当x2x1=1,即时,在(x2,+)上有p(x)0,此时p(x)在区间(x2,+)上是增函数,并且在该区间上有p(x)(p(x2),+),不合题意;当x2x1=1,即a1时,同理可知,p(x)在区间(1,+)上,有p(x)(p(1),+),也不合题意;2)若,则有2a10,此时在区间(1,+)上恒有p(x)0,从而p(x)在区间(1,+)上是减函数;要使p(x)0在此区间上恒成立,只须满足,所以a又因为h(x)=x+2a=0,h(x)在(1,+)上为减函数,h(x)h(1)=+2a0,所以a综合可知a的范围是,【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一22【答案】 【解析】解:()根据直线l的参数方程为(t为参数),消去参数,得x+y=0,直线l的直角坐标方程为x+y=0,圆C的极坐标方程为p2+2psin(+)+1=r2(r0)(x+)2+(y+)2=r2(r0)圆C的直角坐标方程为(x+)2+(y+)2=r2(r0)()圆心C(,),半径为r,(5分)圆心C到直线x+y=0的距离为d=2,又圆C上的点到直线l的最大距离为3,即d+r=3,r=32=1【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识 23【答案】(本小题满分12分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数()由得 (3分) 每天销售量的中位数为千克 (6分)()若当天的销售量为,则超市获利元; 若当天的销售量为,则超市获利元; 若当天的销售量为,则超市获利元, (10分)获利的平均值为元. (12分)24【答案】 【解析】()证明:取PA的中点N,连接QN,BNQ,N是PD,PA的中点,QNAD,且QN=ADPA=2,PD=2,PAPD,AD=4,BC=AD又BCAD,QNBC,且QN=BC,四边形BCQN为平行四边形,BNCQ又BN平面PAB,且CQ平面PAB,CQ平面PAB()解:取AD的中点M,连接BM;取BM的中点O,连接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合作合同书修订版
- 2025年5月陕西省延安市部分学校中考模拟考试九年级数学试卷
- 林业生态保护与农民收益协议
- 人文素养拓展:中华传统文化知识普及教学计划
- 2025企业办公租赁合同标准版样式
- 健康产业政策法规题库
- 奇妙的旅行读后感7篇范文
- 活动策划与组织流程指南
- 宴席承包协议宴席承包协议
- 2025合作共赢蓝图-中外合作公司合同精粹
- 2021年上海市普陀区初三中考二模跨学科案例分析试卷(含标答)
- 地毯清洁培训计划方案
- 合规风险管理指南-应用COSO 企业风险管理框架(2020版-雷泽佳译-2022)
- 复韵母复习公开课一等奖市优质课赛课获奖课件
- 国开2023春《学前儿童语言教育》活动指导形成性考核一二三四参考答案
- Unit+2+Reading+Understanding+culture+through+music语言点课件【知识精讲精研+能力培优提升】 高中英语牛津译林版选择性必修第一册
- 内科学课件肺脓肿演示文稿
- 2023年高考新课标Ⅱ卷文综历史试题解析
- 用户手册-银登网
- 北京市住宅物业服务标准(三级)
- 2023-2024学年广东省茂名市初中语文七年级下册期末高分试卷
评论
0/150
提交评论