




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷桥东区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X(单位:mm)对工期延误天数Y的影响及相应的概率P如表所示:降水量XX100100X200200X300X300工期延误天数Y051530概率P0.40.20.10.3在降水量X至少是100的条件下,工期延误不超过15天的概率为( )A0.1B0.3C0.42D0.52 是首项,公差的等差数列,如果,则序号等于( )A667B668C669D6703 已知e是自然对数的底数,函数f(x)=ex+x2的零点为a,函数g(x)=lnx+x2的零点为b,则下列不等式中成立的是( )Aa1bBab1C1abDb1a4 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等据此可判断丙必定值班的日期是( )A2日和5日B5日和6日C6日和11日D2日和11日5 若f(x)=x2+2ax与g(x)=在区间1,2上都是减函数,则a的取值范围是( )A(,1B0,1C(2,1)(1,1D(,2)(1,16 设f(x)=asin(x+)+bcos(x+)+4,其中a,b,均为非零的常数,f(1988)=3,则f(2008)的值为( )A1B3C5D不确定7 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A BC. D8 如图所示,阴影部分表示的集合是( )A(UB)AB(UA)BCU(AB)DU(AB)9 “1x2”是“x2”成立的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件10设a,bR且a+b=3,b0,则当+取得最小值时,实数a的值是( )ABC或D311sin570的值是( )ABCD12设F1,F2分别是椭圆+=1(ab0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若F1PQ=60,|PF1|=|PQ|,则椭圆的离心率为( )ABCD二、填空题13函数在点处切线的斜率为 14已知数列an满足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前16项和为15如图所示是y=f(x)的导函数的图象,有下列四个命题:f(x)在(3,1)上是增函数;x=1是f(x)的极小值点;f(x)在(2,4)上是减函数,在(1,2)上是增函数;x=2是f(x)的极小值点其中真命题为(填写所有真命题的序号)16设为锐角, =(cos,sin),=(1,1)且=,则sin(+)= 17多面体的三视图如图所示,则该多面体体积为(单位cm)18设函数f(x)=若ff(a),则a的取值范围是三、解答题19已知函数f(x)=|xa|()若不等式f(x)2的解集为0,4,求实数a的值;()在()的条件下,若x0R,使得f(x0)+f(x0+5)m24m,求实数m的取值范围20(本小题满分12分)ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线(1)求证:AD;(2)若A120,AD,求ABC的面积21已知函数f(x)=ax2+lnx(aR)(1)当a=时,求f(x)在区间1,e上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)g(x)f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”已知函数+2ax若在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围22如图所示的几何体中,EA平面ABC,BD平面ABC,AC=BC=BD=2AE=,M是AB的中点(1)求证:CMEM;(2)求MC与平面EAC所成的角23如图,在底面是矩形的四棱锥PABCD中,PA平面ABCD,PA=AB=2,BC=2,E是PD的中点(1)求证:平面PDC平面PAD;(2)求二面角EACD所成平面角的余弦值24(本题12分)已知数列的首项,通项(,为常数),且成等差数列,求:(1)的值;(2)数列前项和的公式.桥东区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:降水量X至少是100的条件下,工期延误不超过15天的概率P,设:降水量X至少是100为事件A,工期延误不超过15天的事件B,P(A)=0.6,P(AB)=0.3,P=P(B丨A)=0.5,故答案选:D2 【答案】C【解析】由已知,由得,故选C答案:C 3 【答案】A【解析】解:由f(x)=ex+x2=0得ex=2x,由g(x)=lnx+x2=0得lnx=2x,作出计算y=ex,y=lnx,y=2x的图象如图:函数f(x)=ex+x2的零点为a,函数g(x)=lnx+x2的零点为b,y=ex与y=2x的交点的横坐标为a,y=lnx与y=2x交点的横坐标为b,由图象知a1b,故选:A【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键4 【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础5 【答案】D【解析】解:函数f(x)=x2+2ax的对称轴为x=a,开口向下,单调间区间为a,+)又f(x)在区间1,2上是减函数,a1函数g(x)=在区间(,a)和(a,+)上均为减函数,g(x)=在区间1,2上是减函数,a2,或a1,即a2,或a1,综上得a(,2)(1,1,故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围6 【答案】B【解析】解:f(1988)=asin(1988+)+bcos(1998+)+4=asin+bcos+4=3,asin+bcos=1,故f(2008)=asin(2008+)+bcos(2008+)+4=asin+bcos+4=1+4=3,故选:B【点评】本题主要考查利用诱导公式进行化简求值,属于中档题7 【答案】A【解析】试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.8 【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,对应的集合表示为AUB故选:A9 【答案】A【解析】解:设A=x|1x2,B=x|x2,AB,故“1x2”是“x2”成立的充分不必要条件故选A【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键10【答案】C【解析】解:a+b=3,b0,b=3a0,a3,且a0当0a3时, +=+=f(a),f(a)=+=,当时,f(a)0,此时函数f(a)单调递增;当时,f(a)0,此时函数f(a)单调递减当a=时, +取得最小值当a0时, +=()=(+)=f(a),f(a)=,当时,f(a)0,此时函数f(a)单调递增;当时,f(a)0,此时函数f(a)单调递减当a=时, +取得最小值综上可得:当a=或时, +取得最小值故选:C【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题11【答案】B【解析】解:原式=sin(720150)=sin150=故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键12【答案】 D【解析】解:设|PF1|=t,|PF1|=|PQ|,F1PQ=60,|PQ|=t,|F1Q|=t,由F1PQ为等边三角形,得|F1P|=|F1Q|,由对称性可知,PQ垂直于x轴,F2为PQ的中点,|PF2|=,|F1F2|=,即2c=,由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,椭圆的离心率为:e=故选D二、填空题13【答案】【解析】试题分析:考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.14【答案】546 【解析】解:当n=2k1(kN*)时,a2k+1=a2k1+1,数列a2k1为等差数列,a2k1=a1+k1=k;当n=2k(kN*)时,a2k+2=2a2k,数列a2k为等比数列,该数列的前16项和S16=(a1+a3+a15)+(a2+a4+a16)=(1+2+8)+(2+22+28)=+=36+292=546故答案为:546【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题15【答案】 【解析】解:由图象得:f(x)在(1,3)上递减,在(3,1),(3,+)递增,f(x)在(3,1)上是增函数,正确,x=3是f(x)的极小值点,不正确;f(x)在(2,4)上是减函数,在(1,2)上是增函数,不正确,故答案为:16【答案】:【解析】解:=cossin=,1sin2=,得sin2=,为锐角,cossin=(0,),从而cos2取正值,cos2=,为锐角,sin(+)0,sin(+)=故答案为:17【答案】cm3 【解析】解:如图所示,由三视图可知:该几何体为三棱锥PABC该几何体可以看成是两个底面均为PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:PCD的面积S=44=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=84=cm3,故答案为: cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键18【答案】或a=1 【解析】解:当时,由,解得:,所以;当,f(a)=2(1a),02(1a)1,若,则,分析可得a=1若,即,因为212(1a)=4a2,由,得:综上得:或a=1故答案为:或a=1【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题三、解答题19【答案】 【解析】解:()|xa|2,a2xa+2,f(x)2的解集为0,4,a=2()f(x)+f(x+5)=|x2|+|x+3|(x2)(x+3)|=5,x0R,使得,即成立,4m+m2f(x)+f(x+5)min,即4m+m25,解得m5,或m1,实数m的取值范围是(,5)(1,+)20【答案】【解析】解:(1)证明:D是BC的中点,BDDC.法一:在ABD与ACD中分别由余弦定理得c2AD22ADcosADB,b2AD22ADcosADC,得c2b22AD2,即4AD22b22c2a2,AD.法二:在ABD中,由余弦定理得AD2c22ccos Bc2ac,AD.(2)A120,AD,由余弦定理和正弦定理与(1)可得a2b2c2bc,2b22c2a219,联立解得b3,c5,a7,ABC的面积为Sbc sin A35sin 120.即ABC的面积为.21【答案】 【解析】解:(1)当时,;对于x1,e,有f(x)0,f(x)在区间1,e上为增函数,(2)在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)f(x)f2(x)令0,对x(1,+)恒成立,且h(x)=f1(x)f(x)=0对x(1,+)恒成立,1)若,令p(x)=0,得极值点x1=1,当x2x1=1,即时,在(x2,+)上有p(x)0,此时p(x)在区间(x2,+)上是增函数,并且在该区间上有p(x)(p(x2),+),不合题意;当x2x1=1,即a1时,同理可知,p(x)在区间(1,+)上,有p(x)(p(1),+),也不合题意;2)若,则有2a10,此时在区间(1,+)上恒有p(x)0,从而p(x)在区间(1,+)上是减函数;要使p(x)0在此区间上恒成立,只须满足,所以a又因为h(x)=x+2a=0,h(x)在(1,+)上为减函数,h(x)h(1)=+2a0,所以a综合可知a的范围是,【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村水域渔业开发与经营协议
- 2025抵押担保合同范本
- 房地产基础知识测试卷
- 分析设备故障对生产的影响及预防措施
- 旅游在线预订平台广告推广服务协议
- 生产线管理与质量控制模拟题
- 2024届湖北省部分学校高三三模考试地理试题(解析版)
- 2024-2025学年山东省聊城市某校高一下学期开学考试地理试题(解析版)
- 2025建筑材料购销合同
- 2025污水池施工承包合同范本
- 2024 - 2025学年一年级下册道德与法治期末考试卷附答案(三套)
- 2024年不动产登记代理人《地籍调查》考试题库大全(含真题、典型题)
- 《公路工程预算定额》(JTGT3832-2018)
- 重庆市(2022年-2023年)初中结业考试地理试题及答案
- 盘扣支模架工程监理细则
- 最新小学生成长记录(课堂PPT)
- LNG饱和曲线图
- 地质灾害治理工程施工记录用表(最新整理
- 水池满水试验记录表(自动计算)
- 山洪灾害防御
- 国家开放大学《管理英语1》边学边练参考答案
评论
0/150
提交评论