桃山区第三中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
桃山区第三中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
桃山区第三中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
桃山区第三中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
桃山区第三中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷桃山区第三中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 不等式0的解集是( )A(,1)(1,2)B1,2C(,1)2,+)D(1,22 设数集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,如果把ba叫做集合x|axb的“长度”,那么集合MN的“长度”的最小值是( )ABCD3 i是虚数单位,i2015等于( )A1B1CiDi4 已知点A(0,1),B(2,3)C(1,2),D(1,5),则向量在方向上的投影为( )ABCD5 过点,的直线的斜率为,则( )A B C D6 已知函数f(x)=lnx+2x6,则它的零点所在的区间为( )A(0,1)B(1,2)C(2,3)D(3,4)7 (2015秋新乡校级期中)已知x+x1=3,则x2+x2等于( )A7B9C11D138 两个随机变量x,y的取值表为x0134y2.24.34.86.7若x,y具有线性相关关系,且bx2.6,则下列四个结论错误的是( )Ax与y是正相关B当y的估计值为8.3时,x6C随机误差e的均值为0D样本点(3,4.8)的残差为0.659 执行如图的程序框图,则输出S的值为( )A2016B2CD1 10已知xR,命题“若x20,则x0”的逆命题、否命题和逆否命题中,正确命题的个数是( )A0B1C2D311奇函数f(x)在(,0)上单调递增,若f(1)=0,则不等式f(x)0的解集是( )A(,1)(0,1)B(,1)(1,+)C(1,0)(0,1)D(1,0)(1,+)12阅读如图所示的程序框图,运行相应的程序若该程序运行后输出的结果不大于20,则输入的整数i的最大值为( )A3B4C5D6二、填空题13已知ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(cb)sinC,且bc=4,则ABC的面积为14当a0,a1时,函数f(x)=loga(x1)+1的图象恒过定点A,若点A在直线mxy+n=0上,则4m+2n的最小值是15如果实数满足等式,那么的最大值是 16椭圆+=1上的点到直线l:x2y12=0的最大距离为17已知实数x,y满足约束条,则z=的最小值为18在等差数列中,公差为,前项和为,当且仅当时取得最大值,则的取值范围为_.三、解答题19(本小题满分10分)已知曲线的极坐标方程为,将曲线,(为参数),经过伸缩变换后得到曲线(1)求曲线的参数方程;(2)若点的在曲线上运动,试求出到曲线的距离的最小值20已知等差数列an中,其前n项和Sn=n2+c(其中c为常数),(1)求an的通项公式;(2)设b1=1,an+bn是公比为a2等比数列,求数列bn的前n项和Tn21(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),过点的直线交曲线于两点. (1)将曲线的参数方程化为普通方程;(2)求的最值.22已知函数y=34cos(2x+),x,求该函数的最大值,最小值及相应的x值23由四个不同的数字1,2,4,x组成无重复数字的三位数(1)若x=5,其中能被5整除的共有多少个?(2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x24(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残存的农药y(单位:微克)的统计表: xi12345yi5753403010(1)在下面的坐标系中,描出散点图,并判断变量x与y的相关性;(2)若用解析式ycx2d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ix,有下列数据处理信息:11,38,(i)(yi)811, (i)2374,对于一组数据(x1,y1),(x2,y2),(xn,yn),其回归直线方程ybxa的斜率和截距的最小二乘估计分别为 (3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水(结果保留1位有效数字)桃山区第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:依题意,不等式化为,解得1x2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解2 【答案】C【解析】解:集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,根据题意,M的长度为,N的长度为,当集合MN的长度的最小值时,M与N应分别在区间0,1的左右两端,故MN的长度的最小值是=故选:C3 【答案】D【解析】解:i2015=i5034+3=i3=i,故选:D【点评】本题主要考查复数的基本运算,比较基础4 【答案】D【解析】解:;在方向上的投影为=故选D【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算5 【答案】【解析】考点:1.斜率;2.两点间距离.6 【答案】C【解析】解:易知函数f(x)=lnx+2x6,在定义域R+上单调递增因为当x0时,f(x);f(1)=40;f(2)=ln220;f(3)=ln30;f(4)=ln4+20可见f(2)f(3)0,故函数在(2,3)上有且只有一个零点故选C7 【答案】A【解析】解:x+x1=3,则x2+x2=(x+x1)22=322=7故选:A【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题8 【答案】【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入bx2.6得b0.95,即0.95x2.6,当8.3时,则有8.30.95x2.6,x6,B正确根据性质,随机误差的均值为0,C正确样本点(3,4.8)的残差4.8(0.9532.6)0.65,D错误,故选D.9 【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件k2016,s=1,k=1满足条件k2016,s=,k=2满足条件k2016,s=2k=3满足条件k2016,s=1,k=4满足条件k2016,s=,k=5观察规律可知,s的取值以3为周期,由2015=3*671+2,有满足条件k2016,s=2,k=2016不满足条件k2016,退出循环,输出s的值为2故选:B【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于基本知识的考查10【答案】C【解析】解:命题“若x20,则x0”的逆命题是“若x0,则x20”,是真命题;否命题是“若x20,则x0”,是真命题;逆否命题是“若x0,则x20”,是假命题;综上,以上3个命题中真命题的个数是2故选:C11【答案】A【解析】解:根据题意,可作出函数图象:不等式f(x)0的解集是(,1)(0,1)故选A12【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件ni,s=2,n=1满足条件ni,s=5,n=2满足条件ni,s=10,n=3满足条件ni,s=19,n=4满足条件ni,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件ni,退出循环,输出s的值为19故选:B【点评】本题主要考查了循环结构的程序框图,属于基础题二、填空题13【答案】 【解析】解:asinA=bsinB+(cb)sinC,由正弦定理得a2=b2+c2bc,即:b2+c2a2=bc,由余弦定理可得b2=a2+c22accosB,cosA=,A=60可得:sinA=,bc=4,SABC=bcsinA=故答案为:【点评】本题主要考查了解三角形问题考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题14【答案】2 【解析】解:整理函数解析式得f(x)1=loga(x1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=14m+2n2=2=2当且仅当4m=2n,即2m=n,即n=,m=时取等号4m+2n的最小值为2故答案为:215【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.16【答案】4 【解析】解:由题意,设P(4cos,2sin)则P到直线的距离为d=,当sin()=1时,d取得最大值为4,故答案为:417【答案】 【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=32x+y,设t=2x+y,则y=2x+t,平移直线y=2x+t,由图象可知当直线y=2x+t经过点B时,直线y=2x+t的截距最小,此时t最小由,解得,即B(3,3),代入t=2x+y得t=2(3)+3=3t最小为3,z有最小值为z=33=故答案为:【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法18【答案】【解析】试题分析:当且仅当时,等差数列的前项和取得最大值,则,即,解得:.故本题正确答案为.考点:数列与不等式综合.三、解答题19【答案】(1)(为参数);(2).【解析】试题解析:(1)将曲线(为参数),化为,由伸缩变换化为,代入圆的方程,得到,可得参数方程为;考点:坐标系与参数方程20【答案】 【解析】解:(1)a1=S1=1+c,a2=S2S1=3,a3=S3S2=5(2分)因为等差数列an,所以2a2=a1+a3得c=0(4分)a1=1,d=2,an=2n1(6分)(2)a2=3,a1+b1=2(8分)(9分)(12分)【点评】本题主要考查等差数列的定义及数列求和的方法,考查学生的运算求解能力,属中档题21【答案】(1).(2)的最大值为,最小值为.【解析】试题解析:解:(1)曲线的参数方程为(为参数),消去参数得曲线的普通方程为 (3分)(2)由题意知,直线的参数方程为(为参数),将代入得 (6分)设对应的参数分别为,则.的最大值为,最小值为. (10分)考点:参数方程化成普通方程22【答案】 【解析】解:函数y=34cos(2x+),由于x,所以:当x=0时,函数ymin=1当x=时,函数ymax=7【点评】本题考查的知识要点:利用余弦函数的定义域求函数的值域属于基础题型23【答案】 【解析】【专题】计算题;排列组合【分析】(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;(4)分析易得x=0时不能满足题意,进而讨论x0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18(1+2+4+x),解可得x的值【解答】解:(1)若x=5,则四个数字为1,2,4,5;又由要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,即能被5整除的三位数共有6个;(2)若x=9,则四个数字为1,2,4,9;又由要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,取出的三个数字为1、2、9时,有A33=6种情况,取出的三个数字为2、4、9时,有A33=6种情况,则此时一共有6+6=12个能被3整除的三位数;(3)若x=0,则四个数字为1,2,4,0;又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,当末位是0时,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,当末位是2或4时,有A21A21A21=8种情况,此时三位偶数一共有6+8=14个,(4)若x=0,可以组成C31C31C21=332=18个三位数,即1、2、4、0四个数字最多出现18次,则所有这些三位数的各位数字之和最大为(1+2+4)18=126,不合题意,故x=0不成立;当x0时,可以组成无重复三位数共有C41C31C21=432=24种,共用了243=72个数字,则每个数字用了=18次,则有252=18(1+2+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论