广义相对论的可观测效应.doc_第1页
广义相对论的可观测效应.doc_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广义相对论的可观测效应 1. 光的引力频移 设引力场中r1处有一静止光源,发光频率为(周期T1),光传到r2处静止接收器,接收频率为(周期T2)。由(1)可得相对频移 在弱引力场,即时,上式近似为 若r2r1,即光由引力强处传向弱处,有,即,称之为引力红移;反之,若r2r1,则,称为引力紫移(或蓝移)。 地球上观测太阳光谱线,将因太阳引力而发生红移。以kg,代入前式,可计算得。 1959年庞德等人在哈佛大学首次在地面上直接验证了引力频移。利用在塔顶发射射线,在塔底接收。塔高H为。 理论计算,频移为 实验测量与理论值符合得相当好,1964年经改进后,二者相差仅为1%。 2. 光线的引力偏折 光线行经引力中心附近时将发生偏折(如图6)。引力双重作用:空间弯曲,测地线为曲线;光线偏离测地线。由广义相对论计算。恒星光线行经太阳边缘,受太阳引力产生的偏转角应为。1919年5月29日日全食时,两组英国科学家分别在巴西和非洲实地观测,测得的偏转结果分别为,二组平均值与爱因斯坦的预言值相符,引起了举世轰动。 图6光线的引力偏折 图7水星近日点的旋进 3. 行星(水星)近日点的旋进 按照牛顿引力理论,行星轨道为封闭椭圆,但天文观测发现,水星每绕日一周,其长轴略有转动,称为水星近日点的旋进,若考虑其他行星的影响,可解释旋进现象,但计算值与观测值之间存在牛顿理论无法解释的差值,称为反常旋进。应用广义相对论关于引力场中的时空弯曲,可以计算出行星近日点旋进的修正值,这正和观测的反常旋进值相符。对水星、金星的反常旋进,两种结果对比列表如下: 观测值理论值 百年百年 百年百年 理论与观测相符,表明广义相对论的惊人成功之处。 此外,还有雷达回波延迟效应。即由地球发射雷达脉冲,到达行星后再返回地球,测量雷达往返的时间。比较雷达波远离太阳和靠近太阳两种情况下,回波时间的差异。太阳引力将使回波时间加长,称为雷达回波延迟。例如地球与水星之间的雷达回波的最大时间差可达240ms。这类测量是目前对广义相对论中空间弯曲的最好检验。70年代末,测量值与理论值之差约为1%,到80年代,利用火星表面的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论