




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷浑源县三中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 定义在R上的偶函数在0,7上是增函数,在7,+)上是减函数,又f(7)=6,则f(x)( )A在7,0上是增函数,且最大值是6B在7,0上是增函数,且最小值是6C在7,0上是减函数,且最小值是6D在7,0上是减函数,且最大值是62 如图,为正方体,下面结论: 平面; ; 平面.其中正确结论的个数是( )A B C D 3 若复数的实部与虚部相等,则实数等于( )(A) ( B ) (C) (D) 4 “ab,c0”是“acbc”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5 在空间中,下列命题正确的是( )A如果直线m平面,直线n内,那么mnB如果平面内的两条直线都平行于平面,那么平面平面C如果平面外的一条直线m垂直于平面内的两条相交直线,那么mD如果平面平面,任取直线m,那么必有m6 设是等比数列的前项和,则此数列的公比( )A-2或-1 B1或2 C.或2 D或-17 已知函数与轴的交点为,且图像上两对称轴之间的最小距离为,则使成立的的最小值为( )1111A B C D8 在等差数列中,首项公差,若,则 A、B、 C、D、9 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A4 B8 C12 D20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力10已知集合A=1,0,1,2,集合B=0,2,4,则AB等于( )A1,0,1,2,4B1,0,2,4C0,2,4D0,1,2,411函数y=x3x2x的单调递增区间为( )ABCD12抛物线x=4y2的准线方程为( )Ay=1By=Cx=1Dx=二、填空题13利用计算机产生1到6之间取整数值的随机数a和b,在a+b为偶数的条件下,|ab|2发生的概率是14已知椭圆+=1(ab0)上一点A关于原点的对称点为B,F为其左焦点,若AFBF,设ABF=,且,则该椭圆离心率e的取值范围为15函数在点处的切线的斜率是 .16设函数,其中x表示不超过x的最大整数若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是17记等比数列an的前n项积为n,若a4a5=2,则8=18若x,y满足线性约束条件,则z=2x+4y的最大值为三、解答题19已知数列an是各项均为正数的等比数列,满足a3=8,a3a22a1=0()求数列an的通项公式()记bn=log2an,求数列anbn的前n项和Sn20如图,三棱柱ABCA1B1C1中,AB=AC=AA1=BC1=2,AA1C1=60,平面ABC1平面AA1C1C,AC1与A1C相交于点D(1)求证:BD平面AA1C1C;(2)求二面角C1ABC的余弦值 21在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的参数方程为:(t为参数)(1)求圆C和直线l的极坐标方程;(2)点P的极坐标为(1,),直线l与圆C相交于A,B,求|PA|+|PB|的值22已知二次函数f(x)的图象过点(0,4),对任意x满足f(3x)=f(x),且有最小值是(1)求f(x)的解析式;(2)求函数h(x)=f(x)(2t3)x在区间0,1上的最小值,其中tR;(3)在区间1,3上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围23 24(1)求证:(2),若 浑源县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:函数在0,7上是增函数,在7,+)上是减函数,函数f(x)在x=7时,函数取得最大值f(7)=6,函数f(x)是偶函数,在7,0上是减函数,且最大值是6,故选:D2 【答案】【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.3 【答案】C 【解析】 i,因为实部与虚部相等,所以2b12b,即b.故选C.4 【答案】A【解析】解:由“ab,c0”能推出“acbc”,是充分条件,由“acbc”推不出“ab,c0”不是必要条件,例如a=1,c=1,b=1,显然acbc,但是ab,c0,故选:A【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题5 【答案】 C【解析】解:对于A,直线m平面,直线n内,则m与n可能平行,可能异面,故不正确;对于B,如果平面内的两条相交直线都平行于平面,那么平面平面,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面平面,任取直线m,那么可能m,也可能m和斜交,;故选:C【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题6 【答案】D【解析】试题分析:当公比时,成立.当时,都不等于,所以, ,故选D. 考点:等比数列的性质.7 【答案】A【解析】考点:三角函数的图象性质8 【答案】A【解析】, 9 【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,所以此四棱锥体积为,故选C.10【答案】A【解析】解:A=1,0,1,2,B=0,2,4,AB=1,0,1,20,2,4=1,0,1,2,4故选:A【点评】本题考查并集及其运算,是基础的会考题型11【答案】A【解析】解:y=x3x2x,y=3x22x1,令y0 即3x22x1=(3x+1)(x1)0 解得:x或x1故函数单调递增区间为,故选:A【点评】本题主要考查导函数的正负和原函数的单调性的关系属基础题12【答案】D【解析】解:抛物线x=4y2即为y2=x,可得准线方程为x=故选:D二、填空题13【答案】 【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是66=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|ab|2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|ab|2发生的概率是P=故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键14【答案】,1 【解析】解:设点A(acos,bsin),则B(acos,bsin)(0);F(c,0);AFBF,=0,即(cacos,bsin)(c+acos,bsin)=0,故c2a2cos2b2sin2=0,cos2=2,故cos=,而|AF|=,|AB|=2c,而sin=,sin,+,即,解得,e1;故答案为:,1【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用15【答案】【解析】试题分析:,则,故答案为. 考点:利用导数求曲线上某点切线斜率.16【答案】(1,) 【解析】解:当2x1时,x=2,此时f(x)=xx=x+2当1x0时,x=1,此时f(x)=xx=x+1当0x1时,1x10,此时f(x)=f(x1)=x1+1=x当1x2时,0x11,此时f(x)=f(x1)=x1当2x3时,1x12,此时f(x)=f(x1)=x11=x2当3x4时,2x13,此时f(x)=f(x1)=x12=x3设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(2,1),D(4,1)时有3个不同的交点,当经过点B(1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(1,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想17【答案】16 【解析】解:等比数列an的前n项积为n,8=a1a2a3a4a5a6a7a8=(a4a5)4=24=16故答案为:16【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键18【答案】38 【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点A时,直线y=x+的截距最大,此时z最大,由,解得,即A(3,8),此时z=23+48=6+32=32,故答案为:38三、解答题19【答案】 【解析】解:()设数列an的公比为q,由an0可得q0,且a3a22a1=0,化简得q2q2=0,解得q=2或q=1(舍),a3=a1q2=4a1=8,a1=2,数列an是以首项和公比均为2的等比数列,an=2n;()由(I)知bn=log2an=n,anbn=n2n,Sn=121+222+323+(n1)2n1+n2n,2Sn=122+223+(n2)2n1+(n1)2n+n2n+1,两式相减,得Sn=21+22+23+2n1+2nn2n+1,Sn=n2n+1,Sn=2+(n1)2n+1【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题20【答案】 【解析】解:(1)四边形AA1C1C为平行四边形,AC=A1C1,AC=AA1,AA1=A1C1,AA1C1=60,AA1C1为等边三角形,同理ABC1是等边三角形,D为AC1的中点,BDAC1,平面ABC1平面AA1C1C,平面ABC1平面AA1C1C=AC1,BD平面ABC1,BD平面AA1C1C(2)以点D为坐标原点,DA、DC、DB分别为x轴、y轴、z轴,建立空间直角坐标系,平面ABC1的一个法向量为,设平面ABC的法向量为,由题意可得,则,所以平面ABC的一个法向量为=(,1,1),cos=即二面角C1ABC的余弦值等于【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题21【答案】 【解析】解:(1)圆C的直角坐标方程为(x2)2+y2=2,代入圆C得:(cos2)2+2sin2=2化简得圆C的极坐标方程:24cos+2=0由得x+y=1,l的极坐标方程为cos+sin=1(2)由得点P的直角坐标为P(0,1),直线l的参数的标准方程可写成代入圆C得:化简得:,t10,t2022【答案】 【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a0设f(x)=a(x)2+将点(0,4)代入得:f(0)=,解得:a=1f(x)=(x)2+=x23x+4(2)h(x)=f(x)(2t3)x=x22tx+4=(xt)2+4t2,x0,1当对称轴x=t0时,h(x)在x=0处取得最小值h(0)=4; 当对称轴0x=t1时,h(x)在x=t处取得最小值h(t)=4t2; 当对称轴x=t1时,h(x)在x=1处取得最小值h(1)=12t+4=2t+5综上所述:当t0时,最小值4;当0t1时,最小值4t2;当t1时,最小值2t+5(3)由已知:f(x)2x+m对于x1,3恒成立,mx25x+4对x1,3恒成立,g(x)=x25x+4在x1,3上的最小值为,m23【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为5,15,(15,25,(25,35,(35,45,由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在5,15内的小球个数为X,求X的分布列和数学期望(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差【专题】概率与统计【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可(2)XB(3,),根据二项分布求解P(X=0),P(X=1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年证券从业资格模拟试题带答案详解(综合卷)
- 小口径顶管施工方案
- 客家方言防疫指南解读
- 2026届吉林省农安县三岗中学九上化学期中考试模拟试题含解析
- 2026届浙江省绍兴市迪荡新区九年级化学第一学期期中考试试题含解析
- 2026届衡水市重点中学英语九年级第一学期期末学业水平测试试题含解析
- 委农办半年工作总结
- 食堂消防安全培训大纲
- 绿色学校知识培训大纲
- 教师企业实践培训汇报
- 邢台城市介绍课件
- 哲学与人生 第二课 树立科学的世界观2.2
- 统编版中考语文一轮复习:义务教育语文课程常用字表(3500字注音版)(2022版课标)
- 火箭制导与控制技术考核试卷
- 建筑工程技术专业《房屋建筑学》课程标准
- 人教版部编版统编版一年级语文上册汉语拼音5《gkh》课件
- DL-T1083-2019火力发电厂分散控制系统技术条件
- 汽车驾驶员(技师)考试试题及答案
- 2024年东台市城市建设投资发展集团有限公司招聘笔试冲刺题(带答案解析)
- 《2024年北京市医疗服务收费目录》
- 2024年全国养老护理职业技能大赛理论备考试题库(附答案)
评论
0/150
提交评论