




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
城中区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 下列函数中,在区间(0,+)上为增函数的是( )Ay=x1By=()xCy=x+Dy=ln(x+1)2 已知集合M=1,4,7,MN=M,则集合N不可能是( )AB1,4CMD2,73 定义新运算:当ab时,ab=a;当ab时,ab=b2,则函数f(x)=(1x)x(2x),x2,2的最大值等于( )A1B1C6D124 平面与平面平行的条件可以是( )A内有无穷多条直线与平行B直线a,aC直线a,直线b,且a,bD内的任何直线都与平行5 函数(,)的部分图象如图所示,则 f (0)的值为( )A. B.C. D. 【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.6 过点(0,2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是( )ABCD7 函数f(x)=3x+x的零点所在的一个区间是( )A(3,2)B(2,1)C(1,0)D(0,1)8 设有直线m、n和平面、,下列四个命题中,正确的是( )A若m,n,则mnB若m,n,m,n,则C若,m,则mD若,m,m,则m9 已知数列的首项为,且满足,则此数列的第4项是( )A1 B C. D10“ab,c0”是“acbc”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11已知函数f(x)=,则的值为( )ABC2D312设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x二、填空题13【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数若有三个零点,则实数m的取值范围是_14在正方形中,,分别是边上的动点,当时,则的取值范围为 【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力15二面角l内一点P到平面,和棱l的距离之比为1:2,则这个二面角的平面角是度16某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种17已知函数f(x)=,则关于函数F(x)=f(f(x)的零点个数,正确的结论是(写出你认为正确的所有结论的序号)k=0时,F(x)恰有一个零点k0时,F(x)恰有2个零点k0时,F(x)恰有3个零点k0时,F(x)恰有4个零点18如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的周长为 1111三、解答题19已知和均为给定的大于1的自然数,设集合,.,集合.。,.,.(1)当,时,用列举法表示集合;(2)设、,.。,.。,其中、,.,.证明:若,则.20某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11()求该校报考飞行员的总人数;()若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差21已知在等比数列an中,a1=1,且a2是a1和a31的等差中项(1)求数列an的通项公式;(2)若数列bn满足b1+2b2+3b3+nbn=an(nN*),求bn的通项公式bn22求同时满足下列两个条件的所有复数z:z+是实数,且1z+6;z的实部和虚部都是整数23设集合A=x|0xm3,B=x|x0或x3,分别求满足下列条件的实数m的取值范围(1)AB=;(2)AB=B24如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E()求证:AE=EB;()若EFFC=,求正方形ABCD的面积 城中区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】 D【解析】解:y=x1在区间(0,+)上为减函数,y=()x是减函数,y=x+,在(0,1)是减函数,(1,+)上为,增函数,y=lnx在区间(0,+)上为增函数,A,B,C不正确,D正确,故选:D【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间2 【答案】D【解析】解:MN=M,NM,集合N不可能是2,7,故选:D【点评】本题主要考查集合的关系的判断,比较基础3 【答案】C【解析】解:由题意知当2x1时,f(x)=x2,当1x2时,f(x)=x32,又f(x)=x2,f(x)=x32在定义域上都为增函数,f(x)的最大值为f(2)=232=6故选C4 【答案】D【解析】解:当内有无穷多条直线与平行时,a与可能平行,也可能相交,故不选A当直线a,a时,a与可能平行,也可能相交,故不选 B当直线a,直线b,且a 时,直线a 和直线 b可能平行,也可能是异面直线,故不选 C 当内的任何直线都与 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况5 【答案】D【解析】易知周期,.由(),得(),可得,所以,则,故选D.6 【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx2,即kxy2=0,若过点(0,2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d1,即1,即k230,解得k或k,即且,综上所述,故选:A7 【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(1)=10,f(0)=30+0=10,f(1)f(0)0,可知:函数f(x)的零点所在的区间是(1,0)故选:C【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题8 【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D9 【答案】B【解析】 10【答案】A【解析】解:由“ab,c0”能推出“acbc”,是充分条件,由“acbc”推不出“ab,c0”不是必要条件,例如a=1,c=1,b=1,显然acbc,但是ab,c0,故选:A【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题11【答案】A【解析】解:函数f(x)=,f()=2,=f(2)=32=故选:A12【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题二、填空题13【答案】【解析】14【答案】(,)上的点到定点的距离,其最小值为,最大值为,故的取值范围为15【答案】75度 【解析】解:点P可能在二面角l内部,也可能在外部,应区别处理当点P在二面角l的内部时,如图,A、C、B、P四点共面,ACB为二面角的平面角,由题设条件,点P到,和棱l的距离之比为1:2可求ACP=30,BCP=45,ACB=75故答案为:75【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关键16【答案】75 【解析】计数原理的应用【专题】应用题;排列组合【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,根据分类计数加法得到共有60+15=75种不同的方法故答案为:75【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏17【答案】 【解析】解:当k=0时,当x0时,f(x)=1,则f(f(x)=f(1)=0,此时有无穷多个零点,故错误;当k0时,()当x0时,f(x)=kx+11,此时f(f(x)=f(kx+1)=,令f(f(x)=0,可得:x=0;()当0x1时,此时f(f(x)=f()=,令f(f(x)=0,可得:x=,满足;()当x1时,此时f(f(x)=f()=k+10,此时无零点综上可得,当k0时,函数有两零点,故正确;当k0时,()当x时,kx+10,此时f(f(x)=f(kx+1)=k(kx+1)+1,令f(f(x)=0,可得:,满足;()当时,kx+10,此时f(f(x)=f(kx+1)=,令f(f(x)=0,可得:x=0,满足;()当0x1时,此时f(f(x)=f()=,令f(f(x)=0,可得:x=,满足;()当x1时,此时f(f(x)=f()=k+1,令f(f(x)=0得:x=1,满足;综上可得:当k0时,函数有4个零点故错误,正确故答案为:【点评】本题考查复合函数的零点问题考查了分类讨论和转化的思想方法,要求比较高,属于难题18【答案】【解析】考点:平面图形的直观图三、解答题19【答案】【解析】20【答案】 【解析】(本小题满分12分)解:()设该校报考飞行员的总人数为n,前三个小组的频率为p1,p2,p3,则,解得,由于,故n=55()由()知,一个报考学生的体重超过60公斤的概率为:p=,由题意知X服从二项分布,即:XB(3,),P(X=k)=,k=0,1,2,3,EX=,DX=【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题21【答案】 【解析】解:(1)设等比数列an的公比为q,由a2是a1和a31的等差中项得:2a2=a1+a31,2q=q2,q0,q=2,;(2)n=1时,由b1+2b2+3b3+nbn=an,得b1=a1=1n2时,由b1+2b2+3b3+nbn=an b1+2b2+3b3+(n1)bn1=an1得:,【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题22【答案】 【解析】解:设z+=t,则 z2tz+10=01t6,=t2400,解方程得 z=i又z的实部和虚部都是整数,t=2或t=6,故满足条件的复数共4个:z=13i 或 z=3i23【答案】 【解析】解:A=x|0xm3,A=x|mxm+3,(1)当AB=时;如图:则,解得m=0,(2)当AB=B时,则AB,由上图可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国左炔诺孕酮片行业消费动态及营销趋势预测报告
- 三叉神经痛课件
- 六级证书面试题库精 编版:不同领域职业能力测试
- 小儿遗传代谢病课件
- 小儿辩日课件
- 大道项目安全文明施工管理工作总结
- 小儿艾条灸课件
- 2025秋新人教版初中英语八上 Unit 5 What a Delicious Meal!单词扩量讲义【增词汇强辨识】
- 大学生毕业实习目的与意义
- 大学生借款合同
- 2025年区块链应用操作员职业技能竞赛理论参考试指导题库500题(含答案)
- 2025年中国移动初级解决方案经理学习考试题库大全-上(单选题)
- DB35T 1951-2020福建省公共机构能耗定额标准
- 医疗机构从业人员规范
- 《研学旅行相关概念与理论基础综述》1900字
- 医院培训课件:《股骨头坏死》
- 保险基础知识简读本(2024版)
- 集团公司司库管理办法
- 住院患儿实施院内转运临床实践指南2023版课件
- 主播新手上路-打造游戏直播与娱乐新风向
- 2024-2025学年中职数学基础模块 下册高教版(2021·十四五)教学设计合集
评论
0/150
提交评论