顺平县二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
顺平县二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
顺平县二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
顺平县二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
顺平县二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷顺平县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若cos()=,则cos(+)的值是( )ABCD2 设,在约束条件下,目标函数的最大值小于2,则的取值范围为( )A B C. D3 已知M=(x,y)|y=2x,N=(x,y)|y=a,若MN=,则实数a的取值范围为( )A(,1)B(,1C(,0)D(,04 设集合A=x|2x4,集合B=x|y=lg(x1),则AB等于( )A(1,2)B1,2C1,2)D(1,25 下列函数中,定义域是且为增函数的是( )A. B. C. D.6 函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,则的一个可能取值是( )A2B3C7D97 若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( )A(0,+)B(0,2)C(1,+)D(0,1)8 已知命题和命题,若为真命题,则下面结论正确的是( )A是真命题 B是真命题 C是真命题 D是真命题9 在ABC中,a2=b2+c2+bc,则A等于( )A120B60C45D3010在三棱柱中,已知平面,此三棱 柱各个顶点都在一个球面上,则球的体积为( ) A B C. D11在张邱建算经中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A33% B49% C62% D88%12在平面直角坐标系中,向量(1,2),(2,m),若O,A,B三点能构成三角形,则()A B C D二、填空题13【盐城中学2018届高三上第一次阶段性考试】函数f(x)=xlnx的单调减区间为 14i是虚数单位,若复数(12i)(a+i)是纯虚数,则实数a的值为15一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60,行驶4小时后,到达C处,看到这个灯塔B在北偏东15,这时船与灯塔相距为海里16已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当ABC的面积最小时,点C的坐标为17向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为18函数f(x)=log(x22x3)的单调递增区间为三、解答题19已知f()=x1(1)求f(x);(2)求f(x)在区间2,6上的最大值和最小值 20已知函数f(x)=ex(x2+ax)在点(0,f(0)处的切线斜率为2()求实数a的值;()设g(x)=x(xt)(tR),若g(x)f(x)对x0,1恒成立,求t的取值范围;()已知数列an满足a1=1,an+1=(1+)an,求证:当n2,nN时 f()+f()+L+f()n()(e为自然对数的底数,e2.71828) 21函数f(x)=Asin(x+)(A0,0,|)的一段图象如图所示 (1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数 22已知函数f(x)=xalnx(aR)(1)当a=2时,求曲线y=f(x)在点A(1,f(1)处的切线方程;(2)求函数f(x)的极值23已知二次函数f(x)的图象过点(0,4),对任意x满足f(3x)=f(x),且有最小值是(1)求f(x)的解析式;(2)求函数h(x)=f(x)(2t3)x在区间0,1上的最小值,其中tR;(3)在区间1,3上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围24已知双曲线过点P(3,4),它的渐近线方程为y=x(1)求双曲线的标准方程;(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1|PF2|=41,求F1PF2的余弦值顺平县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:cos()=,cos(+)=cos=cos()=故选:B2 【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线截距为,作,向可行域内平移,越向上,则的值越大,从而可得当直线直线过点时取最大值,可求得点的坐标可求的最大值,然后由解不等式可求的范围. 3 【答案】D【解析】解:如图,M=(x,y)|y=2x,N=(x,y)|y=a,若MN=,则a0实数a的取值范围为(,0故选:D【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题4 【答案】D【解析】解:A=x|2x4=x|x2,由x10得x1B=x|y=lg(x1)=x|x1AB=x|1x2故选D5 【答案】B 【解析】试题分析:对于A,为增函数,为减函数,故为减函数,对于B,故为增函数,对于C,函数定义域为,不为,对于D,函数为偶函数,在上单调递减,在上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.6 【答案】C【解析】解:函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,sin+acos=2,a=,f(x)=sinx+cosx=2sin(x+)再根据f()=2sin(+)=2,可得+=2k+,kZ,=12k+7,k=0时,=7,则的可能值为7,故选:C【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题7 【答案】D【解析】解:方程x2+ky2=2,即表示焦点在y轴上的椭圆故0k1故选D【点评】本题主要考查了椭圆的定义,属基础题8 【答案】C【解析】111.Com试题分析:由为真命题得都是真命题所以是假命题;是假命题;是真命题;是假命题故选C.考点:命题真假判断9 【答案】A【解析】解:根据余弦定理可知cosA=a2=b2+bc+c2,bc=(b2+c2a2)cosA=A=120故选A10【答案】A【解析】 考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.11【答案】B【解析】12【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。若O,A,B三点共线,有:-m=4,m=-4故要使O,A,B三点不共线,则。故答案为:B二、填空题13【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系14【答案】2 【解析】解:由(12i)(a+i)=(a+2)+(12a)i为纯虚数,得,解得:a=2故答案为:215【答案】24 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=24海里,则这时船与灯塔的距离为24海里故答案为:2416【答案】(,) 【解析】解:设C(a,b)则a2+b2=1,点A(2,0),点B(0,3),直线AB的解析式为:3x+2y6=0如图,过点C作CFAB于点F,欲使ABC的面积最小,只需线段CF最短则CF=,当且仅当2a=3b时,取“=”,a=,联立求得:a=,b=,故点C的坐标为(,)故答案是:(,)【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题17【答案】 【解析】解:不等式组的可行域为:由题意,A(1,1),区域的面积为=(x3)=,由,可得可行域的面积为:1=,坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为: =故答案为:【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积18【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)三、解答题19【答案】 【解析】解:(1)令t=,则x=,f(t)=,f(x)=(x1)(2)任取x1,x22,6,且x1x2,f(x1)f(x2)=,2x1x26,(x11)(x21)0,2(x2x1)0,f(x1)f(x2)0,f(x)在2,6上单调递减,当x=2时,f(x)max=2,当x=6时,f(x)min= 20【答案】 【解析】解:()f(x)=ex(x2+ax),f(x)=ex(x2+ax)+ex(2x+a)=ex(x2+ax2xa);则由题意得f(0)=(a)=2,故a=2()由()知,f(x)=ex(x2+2x),由g(x)f(x)得,x(xt)ex(x2+2x),x0,1;当x=0时,该不等式成立;当x(0,1时,不等式x+t+ex(x+2)在(0,1上恒成立,即tex(x+2)+xmax设h(x)=ex(x+2)+x,x(0,1,h(x)=ex(x+1)+1,h(x)=xex0,h(x)在(0,1单调递增,h(x)h(0)=0,h(x)在(0,1单调递增,h(x)max=h(1)=1,t1()证明:an+1=(1+)an,=,又a1=1,n2时,an=a1=1=n;对n=1也成立,an=n当x(0,1时,f(x)=ex(x22)0,f(x)在0,1上单调递增,且f(x)f(0)=0又f()(1in1,iN)表示长为f(),宽为的小矩形的面积,f()f(x)dx,(1in1,iN), f()+f()+f()= f()+f()+f()f(x)dx又由(),取t=1得f(x)g(x)=x2+(1+)x,f(x)dxg(x)dx=+, f()+f()+f()+,f()+f()+f()n(+)【点评】本题考查函数、导数等基础知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力 21【答案】 【解析】解:(1)由函数的图象可得A=3, T=4,解得=再根据五点法作图可得+=0,求得=,f(x)=3sin(x)(2)令2kx2k+,kz,求得 5kx5k+,故函数的增区间为5k,5k+,kz函数的最大值为3,此时, x=2k+,即 x=5k+,kz,即f(x)的最大值为3,及取到最大值时x的集合为x|x=5k+,kz(3)设把f(x)=3sin(x)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数即y=3sin(x+)则由(x+m)=x+,求得m=,把函数f(x)=3sin(x)的图象向左平移个单位,可得y=3sin(x+)=3cosx 的图象【点评】本题主要考查由函数y=Asin(x+)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin(x+)的图象变换规律,属于基础题22【答案】 【解析】解:函数f(x)的定义域为(0,+),(1)当a=2时,f(x)=x2lnx,因而f(1)=1,f(1)=1,所以曲线y=f(x)在点A(1,f(1)处的切线方程为y1=(x1),即x+y2=0(2)由,x0知:当a0时,f(x)0,函数f(x)为(0,+)上的增函数,函数f(x)无极值;当a0时,由f(x)=0,解得x=a又当x(0,a)时,f(x)0,当x(a,+)时,f(x)0从而函数f(x)在x=a处取得极小值,且极小值为f(a)=aalna,无极大值综上,当a0时,函数f(x)无极值;当a0时,函数f(x)在x=a处取得极小值aalna,无极大值23【答案】 【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a0设f(x)=a(x)2+将点(0,4)代入得:f(0)=,解得:a=1f(x)=(x)2+=x23x+4(2)h(x)=f(x)(2t3)x=x22tx+4=(xt)2+4t2,x0,1当对称轴x=t0时,h(x)在x=0处取得最小值h(0)=4; 当对称轴0x=t1时,h(x)在x=t处取得最小值h(t)=4t2; 当对称轴x=t1时,h(x)在x=1处取得最小值h(1)=12t+4=2t+5综上所述:当t0时,最小值4;当0t1时,最小值4t2;当t1时,最小值2t+5(3)由已知:f(x)2x+m对于x1,3恒成立,mx25x+4对x1,3恒成立,g(x)=x25x+4在x1,3上的最小值为,m24【答案】 【解析】解:(1)设双曲线的方程为y2x2=(0),代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论