




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷合阳县第三中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若函数y=f(x)是y=3x的反函数,则f(3)的值是( )A0B1CD32 设m是实数,若函数f(x)=|xm|x1|是定义在R上的奇函数,但不是偶函数,则下列关于函数f(x)的性质叙述正确的是( )A只有减区间没有增区间B是f(x)的增区间Cm=1D最小值为33 奇函数f(x)在(,0)上单调递增,若f(1)=0,则不等式f(x)0的解集是( )A(,1)(0,1)B(,1)(1,+)C(1,0)(0,1)D(1,0)(1,+)4 已知命题和命题,若为真命题,则下面结论正确的是( )A是真命题 B是真命题 C是真命题 D是真命题5 函数有两个不同的零点,则实数的取值范围是( )A B C D6 已知集合A,B,C中,AB,AC,若B=0,1,2,3,C=0,2,4,则A的子集最多有( )A2个B4个C6个D8个7 已知d为常数,p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8 设是等差数列的前项和,若,则( )A1 B2 C3 D49 根据中华人民共和国道路交通安全法规定:车辆驾驶员血液酒精浓度在2080mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上,属于醉酒驾车据法制晚报报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A2160B2880C4320D864010四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A96B48C24D011已知点P是抛物线y2=2x上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为( )A3BCD12已知函数f(x)的定义域为a,b,函数y=f(x)的图象如下图所示,则函数f(|x|)的图象是( )ABCD二、填空题13向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为14已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=15对于映射f:AB,若A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:AB为一一映射,若存在对应关系,使A到B成为一一映射,则称A到B具有相同的势,给出下列命题:A是奇数集,B是偶数集,则A和B具有相同的势;A是平面直角坐标系内所有点形成的集合,B是复数集,则A和B不具有相同的势;若区间A=(1,1),B=R,则A和B具有相同的势其中正确命题的序号是16(本小题满分12分)点M(2pt,2pt2)(t为常数,且t0)是拋物线C:x22py(p0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.(1)求证:直线PQ的斜率为2t;(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值17函数f(x)=x2ex在区间(a,a+1)上存在极值点,则实数a的取值范围为18设集合A=x|x+m0,B=x|2x4,全集U=R,且(UA)B=,求实数m的取值范围为三、解答题19【徐州市第三中学20172018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆及等腰直角三角形,其中,为裁剪出面积尽可能大的梯形铁片(不计损耗),将点放在弧上,点放在斜边上,且,设.(1)求梯形铁片的面积关于的函数关系式;(2)试确定的值,使得梯形铁片的面积最大,并求出最大值.20某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图()求分数在50,60)的频率及全班人数;()求分数在80,90)之间的频数,并计算频率分布直方图中80,90)间矩形的高;()若要从分数在80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在90,100)之间的概率21在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为(sin+cos)=1,曲线C2的参数方程为(为参数)()求曲线C1的直角坐标方程与曲线C2的普通方程;()试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由 22已知函数f(x)=ax22lnx()若f(x)在x=e处取得极值,求a的值;()若x(0,e,求f(x)的单调区间;() 设a,g(x)=5+ln,x1,x2(0,e,使得|f(x1)g(x2)|9成立,求a的取值范围 23如图,已知边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点()试在棱AD上找一点N,使得CN平面AMP,并证明你的结论()证明:AMPM24已知抛物线C:x2=2py(p0),抛物线上一点Q(m,)到焦点的距离为1()求抛物线C的方程()设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(nN*)()记AOB的面积为f(n),求f(n)的表达式()探究是否存在不同的点A,使对应不同的AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由合阳县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:指数函数的反函数是对数函数,函数y=3x的反函数为y=f(x)=log3x,所以f(9)=log33=1故选:B【点评】本题给出f(x)是函数y=3x(xR)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题2 【答案】B【解析】解:若f(x)=|xm|x1|是定义在R上的奇函数,则f(0)=|m|1=0,则m=1或m=1,当m=1时,f(x)=|x1|x1|=0,此时为偶函数,不满足条件,当m=1时,f(x)=|x+1|x1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键注意使用数形结合进行求解3 【答案】A【解析】解:根据题意,可作出函数图象:不等式f(x)0的解集是(,1)(0,1)故选A4 【答案】C【解析】111.Com试题分析:由为真命题得都是真命题所以是假命题;是假命题;是真命题;是假命题故选C.考点:命题真假判断5 【答案】B【解析】试题分析:函数有两个零点等价于与的图象有两个交点,当时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B. (1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程零点个数的常用方法:直接法:可利用判别式的正负直接判定一元二次方程根的个数;转化法:函数零点个数就是方程根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;数形结合法:一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.本题的解答就利用了方法.6 【答案】B【解析】解:因为B=0,1,2,3,C=0,2,4,且AB,AC;ABC=0,2集合A可能为0,2,即最多有2个元素,故最多有4个子集故选:B7 【答案】A【解析】解:p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p:nN*,an+2an+1d;q:数列 an不是公差为d的等差数列,由pq,即an+2an+1不是常数,则数列 an就不是等差数列,若数列 an不是公差为d的等差数列,则不存在nN*,使得an+2an+1d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立8 【答案】A【解析】1111试题分析:故选A111考点:等差数列的前项和9 【答案】C【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)10=0.15,又总人数为28800,故属于醉酒驾车的人数约为:288000.15=4320故选C【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题10【答案】 B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系【专题】计算题;压轴题【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,求安全存放的不同方法的种数首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况然后求出即可得到答案【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48故选B【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖11【答案】B【解析】解:依题设P在抛物线准线的投影为P,抛物线的焦点为F,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|MF|=即有当M,P,F三点共线时,取得最小值,为故选:B【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想12【答案】B【解析】解:y=f(|x|)是偶函数,y=f(|x|)的图象是由y=f(x)把x0的图象保留,x0部分的图象关于y轴对称而得到的故选B【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f(x)的图象和函数f(|x|)的图象之间的关系,函数y=f(x)的图象和函数|f(x)|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题二、填空题13【答案】 【解析】解:不等式组的可行域为:由题意,A(1,1),区域的面积为=(x3)=,由,可得可行域的面积为:1=,坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为: =故答案为:【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积14【答案】5 【解析】解:求导得:f(x)=3ax2+2bx+c,结合图象可得x=1,2为导函数的零点,即f(1)=f(2)=0,故,解得故=5故答案为:515【答案】 【解析】解:根据一一映射的定义,集合A=奇数B=偶数,不妨给出对应法则加1则AB是一一映射,故正确;对设Z点的坐标(a,b),则Z点对应复数a+bi,a、bR,复合一一映射的定义,故不正确;对,给出对应法则y=tanx,对于A,B两集合可形成f:AB的一一映射,则A、B具有相同的势;正确故选:【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力16【答案】【解析】解:(1)证明:l1的斜率显然存在,设为k,其方程为y2pt2k(x2pt)将与拋物线x22py联立得,x22pkx4p2t(kt)0,解得x12pt,x22p(kt),将x22p(kt)代入x22py得y22p(kt)2,P点的坐标为(2p(kt),2p(kt)2)由于l1与l2的倾斜角互补,点Q的坐标为(2p(kt),2p(kt)2),kPQ2t,即直线PQ的斜率为2t.(2)由y得y,拋物线C在M(2pt,2pt2)处的切线斜率为k2t.其切线方程为y2pt22t(x2pt),又C的准线与y轴的交点T的坐标为(0,)2pt22t(2pt)解得t,即t的值为.17【答案】(3,2)(1,0) 【解析】解:函数f(x)=x2ex的导数为y=2xex+x2ex =xex (x+2),令y=0,则x=0或2,2x0上单调递减,(,2),(0,+)上单调递增,0或2是函数的极值点,函数f(x)=x2ex在区间(a,a+1)上存在极值点,a2a+1或a0a+1,3a2或1a0故答案为:(3,2)(1,0)18【答案】m2 【解析】解:集合A=x|x+m0=x|xm,全集U=R,所以CUA=x|xm,又B=x|2x4,且(UA)B=,所以有m2,所以m2故答案为m2三、解答题19【答案】(1),其中.(2)时,【解析】试题分析:(1)求梯形铁片的面积关键是用表示上下底及高,先由图形得,这样可得高,再根据等腰直角三角形性质得,最后根据梯形面积公式得,交代定义域(2)利用导数求函数最值:先求导数,再求导函数零点,列表分析函数单调性变化规律,确定函数最值试题解析:(1)连接,根据对称性可得且,所以,所以,其中考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f(x)0或f(x)0求单调区间;第二步:解f(x)0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小20【答案】 【解析】解:()分数在50,60)的频率为0.00810=0.08,由茎叶图知:分数在50,60)之间的频数为2,全班人数为()分数在80,90)之间的频数为2522=3;频率分布直方图中80,90)间的矩形的高为()将80,90)之间的3个分数编号为a1,a2,a3,90,100)之间的2个分数编号为b1,b2,在80,100)之间的试卷中任取两份的基本事件为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10个,其中,至少有一个在90,100)之间的基本事件有7个,故至少有一份分数在90,100)之间的概率是21【答案】 【解析】解:()由曲线C1的极坐标方程为(sin+cos)=1,可得它的直角坐标方程为x+y=1,根据曲线C2的参数方程为(为参数),可得它的普通方程为+y2=1()把曲线C1与C2是联立方程组,化简可得 5x28x=0,显然=640,故曲线C1与C2是相交于两个点解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,)【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题 22【答案】 【解析】解:() f(x)=2ax= 由已知f(e)=2ae=0,解得a=经检验,a=符合题意 () 1)当a0时,f(x)0,f(x)在(0,e上是减函数2)当a0时,若e,即,则f(x)在(0,)上是减函数,在(,e上是增函数;若e,即0a,则f(x)在0,e上是减函数综上所述,当a时,f(x)的减区间是(0,e,当a时,f(x)的减区间是,增区间是()当时,由()知f(x)的最小值是f()=1+lna;易知g(x)在(0,e上的最大值是g(e)=4lna;注意到(1+lna)(4lna)=5+2lna0,故由题设知,解得ae2故a的取值范围是(,e2) 23【答案】 【解析】()解:在棱AD上找中点N,连接CN,则CN平面AMP;证明:因为M为BC的中点,四边形ABCD是矩形,所以CM平行且相等于DN,所以四边形MCNA为矩形,所以CNAM,又CN平面AMP,AM平面AMP,所以CN平面AMP()证明:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届吉林省松原市乾安县七中高考英语必刷试卷含解析
- 2025届河北省保定市高三下学期联考英语试题含解析
- 2025年度党团知识竞赛活动总复习题库及答案(共50题)
- 全球铀矿资源开发潜力与2025年核能产业国际合作报告
- 2025知识产权许可转让合同
- 工业互联网平台安全多方计算在设备预测性维护中的应用前景报告
- 运动品牌数字化营销策略与用户体验情感化设计研究
- 2025电影联合制作合同
- 2025年中国植物天然纤维行业市场运行格局及投资前景预测分析报告
- 时尚零售业快时尚模式可持续发展报告2025
- 闽教版五年级下册信息技术教案带反思
- 苏科版二年级下册劳动第8课《杯套》课件
- GB/T 28799.2-2020冷热水用耐热聚乙烯(PE-RT)管道系统第2部分:管材
- GB/T 20203-2006农田低压管道输水灌溉工程技术规范
- GB/T 14216-2008塑料膜和片润湿张力的测定
- 新型节能型建筑材料的发展方向论文
- 最新班组级安全培训试卷及答案
- 工程开工令模板
- 2022更新国家开放大学电大《计算机组网技术》网络核心课形考任务三及四答案
- 特种设备检查记录
- 武广客运专线隧道防排水技术的突破QC成果
评论
0/150
提交评论