




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数与一次函数一、选择题1函数y=(m+1)x(4m3)的图象在第一、二、四象限,那么m的取值范围是()ABCm1Dm12一次函数y=5x+3的图象经过的象限是()A一,二,三B二,三,四C一,二,四D一,三,四3在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示有下列说法:起跑后1小时内,甲在乙的前面;第1小时两人都跑了10千米;甲比乙先到达终点;两人都跑了20千米其中正确的说法有()A1个B2个C3个D4个4一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()ABCD5小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1v2v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()ABCD6时钟在正常运行时,分针每分钟转动6,时针每分钟转动0.5在运行过程中,时针与分针的夹角会随时间的变化而变化设时针与分针的夹角为y(度),运行时间为t(分),当时间从12:00开始到12:30止,y与t之间的函数图象是()ABCD7某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为,这个函数的图象大致是()ABCD8如图,巳知A点坐标为(5,0),直线y=x+b(b0)与y轴交于点B,连接AB,=75,则b的值为()A3BC4D9如图所示,函数y1=|x|和的图象相交于(1,1),(2,2)两点当y1y2时,x的取值范围是()Ax1B1x2Cx2Dx1或x210在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为()Ay=x+1By=x1Cy=xDy=x2二、填空题11将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案设菱形中较小角为x度,平行四边形中较大角为y度,则y与x的关系式是12如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连结DP,过点A作AEDP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系式是13若解方程x+2=3x2得x=2,则当x时,直线y=x+2上的点在直线y=3x2上相应点的上方14已知一次函数y=x+a与y=x+b的图象相交于点(m,8),则a+b=15如果直线y=2x+k与两坐标轴所围成的三角形面积是9,则k的值为三、解答题16点A,B,C,D的坐标如图,求直线AB与直线CD的交点坐标17某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200170乙连锁店160150设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元)(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?18 2010年秋冬北方严重干早,凤凰社区人畜饮用水紧张毎天需从社区外调运饮用水120吨,有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂毎天最多可调出80吨,乙厂毎天最多可调出90吨从两水厂运水到凤凰社区供水点的路程和运费如下表:到凤凰社区供水点的路程(千米)运费(元/吨千米)甲厂2012乙厂1415(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?(2)设从甲厂调运饮用水x吨,总运费为W元试写出W关于与x的函数关系式,怎样安排调运方案才能使毎天的总运费最省?函数与一次函数参考答案与试题解析一、选择题1函数y=(m+1)x(4m3)的图象在第一、二、四象限,那么m的取值范围是()ABCm1Dm1【考点】一次函数图象与系数的关系【专题】计算题【分析】函数y=(m+1)x(4m3)的图象在第一、二、四象限,可得m+10,截距(4m3)0,解不等式组可得答案【解答】解:由已知得,函数y=(m+1)x(4m3)的图象在第一、二、四象限,有,解之得:m1故答案选C【点评】本题考查了学生对函数图象与坐标系的位置关系和解不等式组2一次函数y=5x+3的图象经过的象限是()A一,二,三B二,三,四C一,二,四D一,三,四【考点】一次函数的性质【分析】根据直线解析式知:k0,b0由一次函数的性质可得出答案【解答】解:y=5x+3k=50,b=30直线经过第一、二、四象限故选C【点评】能够根据k,b的符号正确判断直线所经过的象限3在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示有下列说法:起跑后1小时内,甲在乙的前面;第1小时两人都跑了10千米;甲比乙先到达终点;两人都跑了20千米其中正确的说法有()A1个B2个C3个D4个【考点】函数的图象【专题】压轴题【分析】由图象可知起跑后1小时内,甲在乙的前面;在跑了1小时时,乙追上甲,此时都跑了10千米;乙比甲先到达终点;求得乙跑的直线的解析式,即可求得两人跑的距离,则可求得答案【解答】解:根据图象得:起跑后1小时内,甲在乙的前面;故正确;在跑了1小时时,乙追上甲,此时都跑了10千米,故正确;乙比甲先到达终点,故错误;设乙跑的直线解析式为:y=kx,将点(1,10)代入得:k=10,解析式为:y=10x,当x=2时,y=20,两人都跑了20千米,故正确所以三项正确故选:C【点评】此题考查了函数图形的意义解题的关键是根据题意理解各段函数图象的实际意义,正确理解函数图象横纵坐标表示的意义,理解问题的过程4一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()ABCD【考点】一次函数的应用;一次函数的图象【分析】因为一个矩形被直线分成面积为x,y的两部分,矩形的面积一定,y随着x的增大而减小,但是x+y=k(矩形的面积是一定值),由此可以判定答案【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x0,y0,图象位于第一象限,所以只有A符合要求故选A【点评】此题主要考查实际问题的一次函数的图象与性质,解答时要熟练运用5小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1v2v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()ABCD【考点】函数的图象【专题】压轴题;数形结合;函数思想【分析】根据题意可对每个选项逐一分析判断图象得正误【解答】解:A、从图象上看小亮的路程走平路不变是不正确的,故不是B、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是C、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确D、因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线,不正确,故不是故选:C【点评】此题考查的知识点是函数的图象,关键是根据题意看图象是否符合已知要求6时钟在正常运行时,分针每分钟转动6,时针每分钟转动0.5在运行过程中,时针与分针的夹角会随时间的变化而变化设时针与分针的夹角为y(度),运行时间为t(分),当时间从12:00开始到12:30止,y与t之间的函数图象是()ABCD【考点】函数的图象;钟面角【专题】压轴题;数形结合【分析】由于从12:00开始时针与分针的夹角为0,而分针每分钟转动6,时针每分钟转动0.5,由此得到时针与分针的夹角越来越大,可以根据已知条件计算夹角的大小【解答】解:从12:00开始时针与分针的夹角为0,而分针每分钟转动6,时针每分钟转动0.5,y越来越大,而分针每分钟转动6,时针每分钟转动0.5,从12:00开始到12:30止,y=(60.5)30=165故选:A【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一7某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为,这个函数的图象大致是()ABCD【考点】反比例函数的应用;反比例函数的图象【专题】几何图形问题;数形结合【分析】先根据长方体的体积公式列出解析式,再根据反比例函数的性质解答注意深度h(m)的取值范围【解答】解:根据题意可知:,依据反比例函数的图象和性质可知,图象为反比例函数在第一象限内的部分故选C【点评】主要考查了反比例函数的应用和反比例函数的图象性质,要掌握它的性质才能灵活解题反比例函数y=的图象是双曲线,当k0时,它的两个分支分别位于第一、三象限;当k0时,它的两个分支分别位于第二、四象限8如图,巳知A点坐标为(5,0),直线y=x+b(b0)与y轴交于点B,连接AB,=75,则b的值为()A3BC4D【考点】一次函数综合题【专题】综合题;压轴题【分析】根据三角函数求出点B的坐标,代入直线y=x+b(b0),即可求得b的值【解答】解:由直线y=x+b(b0),可知1=45,=75,ABO=1804575=60,OB=OAtanABO=点B的坐标为(0,),b=故选:B【点评】本题灵活考查了一次函数点的坐标的求法和三角函数的知识,注意直线y=x+b(b0)与x轴的夹角为459如图所示,函数y1=|x|和的图象相交于(1,1),(2,2)两点当y1y2时,x的取值范围是()Ax1B1x2Cx2Dx1或x2【考点】两条直线相交或平行问题【专题】函数思想【分析】首先由已知得出y1=x或y1=x又相交于(1,1),(2,2)两点,根据y1y2列出不等式求出x的取值范围【解答】解:当x0时,y1=x,又,两直线的交点为(2,2),当x0时,y1=x,又,两直线的交点为(1,1),由图象可知:当y1y2时x的取值范围为:x1或x2故选D【点评】此题考查的是两条直线相交问题,关键要由已知列出不等式,注意象限和符号10在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为()Ay=x+1By=x1Cy=xDy=x2【考点】一次函数图象与几何变换【专题】压轴题;探究型【分析】根据“左加右减”的原则进行解答即可【解答】解:由“左加右减”的原则可知,在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为y=x+1故选A【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键二、填空题11(2011江西)将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案设菱形中较小角为x度,平行四边形中较大角为y度,则y与x的关系式是y=【考点】平面镶嵌(密铺);平行四边形的性质;菱形的性质【专题】数形结合【分析】根据菱形的性质得出ADC=180x,CDB=y,进而根据ADC+CDB+ADB=360,得出y,x之间的关系【解答】解:根据平面镶嵌的性质得出:ADC=180x,CDB=y,ADC+CDB+ADB=360,180x+y+y=360,2yx=180,y=x+90,故答案为:y=x+90【点评】此题主要考查了菱形的性质以及平行四边形的性质和平面镶嵌的性质,得出ADC+CDB+ADB=360是解决问题的关键12(2014泗县校级模拟)如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连结DP,过点A作AEDP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系式是y=【考点】矩形的性质;根据实际问题列一次函数关系式【分析】首先连接AP,根据矩形的性质可得SAPD=S矩形ABCD,再代入相应数值可得答案【解答】解:连接AP,SAPD=PDAE=ADAB,xy=34xy=12,y=,故答案为:y=【点评】此题主要考查了矩形的性质,应利用APD的面积的不同表示方法求得y与x的函数关系13若解方程x+2=3x2得x=2,则当x2时,直线y=x+2上的点在直线y=3x2上相应点的上方【考点】一次函数与二元一次方程(组)【专题】数形结合【分析】若解方程x+2=3x2得x=2,即当x=2时,直线y=x+2与直线y=3x2相交,作出函数的大致图象,就可以得到结论【解答】解:由于方程x+2=3x2的解为:x=2;因此直线y=x+2与直线y=3x2的交点横坐标为x=2;由图可知:当x2时,直线y=x+2上的点在直线y=3x2上相应点的上方【点评】本题考查了一次函数和二元一次方程组,正确作出两个函数的大致图象,是解决本题的关键,可以结合一次函数与方程的关系解决问题14已知一次函数y=x+a与y=x+b的图象相交于点(m,8),则a+b=16【考点】两条直线相交或平行问题【专题】计算题【分析】把(m,8)代入两个一次函数,相加即可得到a+b的值【解答】解:一次函数y=x+a与y=x+b的图象相交于点(m,8),m+a=8,m+b=8,+得:a+b=16故填16【点评】用到的知识点为:两个函数的交点的横纵坐标适合这两个函数解析式;注意用加减法消去与所求字母无关的字母15如果直线y=2x+k与两坐标轴所围成的三角形面积是9,则k的值为6【考点】一次函数综合题【分析】此题首先求出直线y=2x+k与两坐标轴交点坐标,然后利用坐标表示出与两坐标轴所围成的三角形的直角边长,再根据所围成的三角形面积是9可以列出关于k的方程求解【解答】解:当x=0时,y=k;当y=0时,x=直线y=2x+k与两坐标轴的交点坐标为A(0,k),B(,0),SAOB=9,k=6故填空答案:6【点评】本题主要考查了一次函数与坐标轴交点的坐标的求法及直线与两坐标轴所围成的三角形面积的求法三、解答题16点A,B,C,D的坐标如图,求直线AB与直线CD的交点坐标【考点】两条直线相交或平行问题【分析】本题需先根据已知条件写出直线AB、CD的解析式,再把方程组进行解答,即可求出直线AB,CD的交点坐标【解答】解:设直线AB方程为y=kx+b(k,b为常数,且k0)”,解得:,直线AB的方程为:y=2x+6,同理可得:直线CD方程为解方程组,得,所以直线AB,CD的交点坐标为(2,2)【点评】本题主要考查了两条直线相交或平行问题,在解题时要根据已知条件再结合图形写出解析式是本题的关键17某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200170乙连锁店160150设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元)(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?【考点】一次函数的应用【专题】优选方案问题【分析】(1)首先设调配给甲连锁店电冰箱(70x)台,调配给乙连锁店空调机(40x)台,电冰箱60(70x)=(x10)台,列出不等式组求解即可;(2)由(1)可得几种不同的分配方案;依题意得出y与a的关系式,解出不等式方程后可得出使利润达到最大的分配方案【解答】解:(1)由题意可知,调配给甲连锁店电冰箱(70x)台,调配给乙连锁店空调机(40x)台,电冰箱为60(70x)=(x10)台,则y=200x+170(70x)+160(40x)+150(x10),即y=20x+1680010x40y=20x+16800(10x40);(2)由题意得:y=(200a)x+170(70x)+160(40x)+150(x10),即y=(20a)x+16800200a170,a30当0a20时,20a0,函数y随x的增大而增大,故当x=40时,总利润最大,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x的取值在10x40内的所有方案利润相同; 当20a30时,20a0,函数y随x的增大而减小,故当x=10时,总利润最大,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,(1)根据40台空调机,60台电冰箱都能卖完,列出不等式关系式即可求解;(2)由(1)关系式,结合让利后每台空调机的利润仍然高于甲连锁店销售的每
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 谭师傅安全知识培训直播课件
- 2025版设备租赁合同及期满回购协议
- 2025年度房产买卖定金合同(含物业管理条款)
- 2025版汽车零部件研发中心租赁合同
- 2025年防火玻璃防火玻璃板购销合同
- 2025版水泥制品出口业务代理销售合同
- 2025年公路测量劳务分包合同编制范本
- 2025年数字经济战略合作伙伴聘用协议
- 2025版石材工程投标保证金及施工管理合同
- 2025年涵洞建筑工程承包合同模板下载
- 小学国家领土与主权教育
- 工程造价协议合同
- 2025年长沙环境保护职业技术学院单招职业技能测试题库附答案
- 人工智能技术在中职语文教学中的实践
- 苏州印象城考察报告3.31课件
- 《中华会计文化传承与变迁》课件-第八篇 现代会计文化
- 2025年湘教版八年级数学上册教学计划与实践
- 装饰工程项目管理方案
- 旅行社安全培训课件
- 2024年10月自考00107现代管理学试题及答案
- 《一个粗瓷大碗》公开课一等奖创新教案
评论
0/150
提交评论