清河区第三中学校2018-2019学年上学期高二数学12月月考试题_第1页
清河区第三中学校2018-2019学年上学期高二数学12月月考试题_第2页
清河区第三中学校2018-2019学年上学期高二数学12月月考试题_第3页
清河区第三中学校2018-2019学年上学期高二数学12月月考试题_第4页
清河区第三中学校2018-2019学年上学期高二数学12月月考试题_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷清河区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x的图象是( )ABCD2 (文科)要得到的图象,只需将函数的图象( )A向左平移1个单位 B向右平移1个单位 C向上平移1个单位 D向下平移1个单位3 方程x2+2ax+y2=0(a0)表示的圆( )A关于x轴对称B关于y轴对称C关于直线y=x轴对称D关于直线y=x轴对称4 设ABC的三边长分别为a、b、c,ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体SABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体SABC的体积为V,则r=( )ABCD5 已知集合A=0,1,2,则集合B=xy|xA,yA的元素个数为( )A4B5C6D96 已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0)若点M到该抛物线焦点的距离为3,则|OM|=( )ABC4D7 如果对定义在上的函数,对任意,均有成立,则称函数为“函数”.给出下列函数:;其中函数是“函数”的个数为( )A1 B2 C3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大8 函数y=+的定义域是( )Ax|x1Bx|x1且x3Cx|x1且x3Dx|x1且x39 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( )A3,6,9,12,15,18B4,8,12,16,20,24C2,7,12,17,22,27D6,10,14,18,22,2610若实数x,y满足不等式组则2x+4y的最小值是( )A6B6C4D211在ABC中,若A=2B,则a等于( )A2bsinAB2bcosAC2bsinBD2bcosB12记集合T=0,1,2,3,4,5,6,7,8,9,M=,将M中的元素按从大到小排列,则第2013个数是( )ABCD二、填空题13若函数f(x)=x22x(x2,4),则f(x)的最小值是14在ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1若C=,则=15等差数列中,公差,则使前项和取得最大值的自然数是_.16的展开式中,常数项为_(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.17数列 an中,a12,an1anc(c为常数),an的前10项和为S10200,则c_18若数列满足,则数列的通项公式为 .三、解答题19已知函数f(x)=|2x+1|,g(x)=|x|+a()当a=0时,解不等式f(x)g(x);()若存在xR,使得f(x)g(x)成立,求实数a的取值范围 20已知y=f(x)的定义域为1,4,f(1)=2,f(2)=3当x1,2时,f(x)的图象为线段;当x2,4时,f(x)的图象为二次函数图象的一部分,且顶点为(3,1)(1)求f(x)的解析式;(2)求f(x)的值域21 设函数,()证明:;()若对所有的,都有,求实数的取值范围 22(本小题满分12分)已知等差数列的前项和为,且,(1)求的通项公式和前项和;(2)设,为数列的前项和,若不等式对于任意的恒成立,求实数的取值范围232015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7x9)时,一年的销售量为(x10)2万件()求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);()当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值24如图,在ABC中,BC边上的中线AD长为3,且sinB=,cosADC=()求sinBAD的值;()求AC边的长清河区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,只有符合故选:D【点评】本题考查了幂函数的图象与性质,属于基础题2 【答案】C【解析】试题分析:,故向上平移个单位.考点:图象平移 3 【答案】A【解析】解:方程x2+2ax+y2=0(a0)可化为(x+a)2+y2=a2,圆心为(a,0),方程x2+2ax+y2=0(a0)表示的圆关于x轴对称,故选:A【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键4 【答案】 C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和则四面体的体积为 R=故选C【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去一般步骤:找出两类事物之间的相似性或者一致性用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想)5 【答案】B【解析】解:x=0时,y=0,1,2,xy=0,1,2;x=1时,y=0,1,2,xy=1,0,1;x=2时,y=0,1,2,xy=2,1,0;B=0,1,2,1,2,共5个元素故选:B6 【答案】B【解析】解:由题意,抛物线关于x轴对称,开口向右,设方程为y2=2px(p0)点M(2,y0)到该抛物线焦点的距离为3,2+=3p=2抛物线方程为y2=4xM(2,y0)|OM|=故选B【点评】本题考查抛物线的性质,考查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程7 【答案】第8 【答案】D【解析】解:由题意得:,解得:x1或x3,故选:D【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题9 【答案】C【解析】解:从30件产品中随机抽取6件进行检验,采用系统抽样的间隔为306=5,只有选项C中编号间隔为5,故选:C10【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点C时,直线y=x+的截距最小,此时z最小,由,解得,即C(3,3),此时z=2x+4y=23+4(3)=612=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键11【答案】D【解析】解:A=2B,sinA=sin2B,又sin2B=2sinBcosB,sinA=2sinBcosB,根据正弦定理=2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB故选D12【答案】 A【解析】进行简单的合情推理【专题】规律型;探究型【分析】将M中的元素按从大到小排列,求第2013个数所对应的ai,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案【解答】因为=(a1103+a2102+a310+a4),括号内表示的10进制数,其最大值为 9999;从大到小排列,第2013个数为99992013+1=7987所以a1=7,a2=9,a3=8,a4=7则第2013个数是故选A【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可二、填空题13【答案】0 【解析】解:f(x)=x22x=(x1)21,其图象开口向上,对称抽为:x=1,所以函数f(x)在2,4上单调递增,所以f(x)的最小值为:f(2)=2222=0故答案为:0【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理14【答案】= 【解析】解:在ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1,sinAsinB+sinBsinC=2sin2B再由正弦定理可得 ab+bc=2b2,即 a+c=2b,故a,b,c成等差数列C=,由a,b,c成等差数列可得c=2ba,由余弦定理可得 (2ba)2=a2+b22abcosC=a2+b2+ab化简可得 5ab=3b2, =故答案为:【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题15【答案】或【解析】试题分析:因为,且,所以,所以,所以,所以,所以,所以取得最大值时的自然数是或考点:等差数列的性质【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出,所以是解答的关键,同时结论中自然数是或是结论的一个易错点16【答案】【解析】的展开式通项为,所以当时,常数项为.17【答案】【解析】解析:由a12,an1anc,知数列an是以2为首项,公差为c的等差数列,由S10200得102c200,c4.答案:418【答案】 【解析】【解析】;故三、解答题19【答案】 【解析】解:()当a=0时,由f(x)g(x)得|2x+1|x,两边平方整理得3x2+4x+10,解得x1 或x原不等式的解集为 (,1,+) ()由f(x)g(x) 得 a|2x+1|x|,令 h(x)=|2x+1|x|,即 h(x)=,故 h(x)min=h()=,故可得到所求实数a的范围为,+)【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题 20【答案】 【解析】解:(1)当x1,2时f(x)的图象为线段,设f(x)=ax+b,又有f(1)=2,f(2)=3a+b=2,2a+b=3,解得a=1,b=1,f(x)=x+1,当x2,4时,f(x)的图象为二次函数的一部分,且顶点为(3,1),设f(x)=a(x3)2+1,又f(2)=3,所以代入得a+1=3,a=2,f(x)=2(x3)2+1(2)当x1,2,2f(x)3,当x2,4,1f(x)3,所以1f(x)3故f(x)的值域为1,321【答案】 【解析】()令,由 在递减,在递增, 即成立 5分() 记, 在恒成立, , , 在递增, 又, 7分 当 时,成立, 即在递增, 则,即 成立; 9分 当时,在递增,且, 必存在使得则时, 即 时,与在恒成立矛盾,故舍去 综上,实数的取值范围是 12分22【答案】【解析】【命题意图】本题考查等差数列通项与前项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用23【答案】 【解析】解:()该连锁分店一年的利润L(万元)与售价x的函数关系式为:L(x)=(x7)(x10)2,x7,9,()L(x)=(x10)2+2(x7)(x10)=3(x10)(x8),令L(x)=0,得x=8或x=10(舍去),x7,8,L(x)0,x8,9,L(x)0,L(x)在x7,8上单调递增,在x8,9上单调递减,L(x)max=L(8)=4;答:每件纪念品的售价为8元,该连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论