东河区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
东河区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
东河区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
东河区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
东河区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷东河区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如图,一个底面半径为R的圆柱被与其底面所成角是30的平面所截,截面是一个椭圆,则该椭圆的离心率是( )ABCD2 集合,是的一个子集,当时,若有,则称为的一个“孤立元素”.集合是的一个子集, 中含4个元素且中无“孤立元素”,这样的集合共有个A.4 B. 5 C.6 D.73 已知数列,则5是这个数列的( )A第12项B第13项C第14项D第25项4 已知向量,其中则“”是“”成立的()A充分而不必要条件 B必要而不充分条件 C充要条件 D既不充分又不必要条件5 若函数则的值为( )A5 B C D26 四棱锥PABCD的底面是一个正方形,PA平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是( )ABCD7 设f(x)与g(x)是定义在同一区间a,b上的两个函数,若函数y=f(x)g(x)在xa,b上有两个不同的零点,则称f(x)和g(x)在a,b上是“关联函数”,区间a,b称为“关联区间”若f(x)=x23x+4与g(x)=2x+m在0,3上是“关联函数”,则m的取值范围为( )A(,2B1,0C(,2D(,+)8 如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )ABCD9 如果对定义在上的函数,对任意,均有成立,则称函数为“函数”.给出下列函数:;其中函数是“函数”的个数为( )A1 B2 C3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大10如果点P(sincos,2cos)位于第二象限,那么角所在象限是( )A第一象限B第二象限C第三象限D第四象限11数列1,4,7,10,(1)n(3n2)的前n项和为Sn,则S11+S20=( )A16B14C28D3012已知两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,则实数a等于( )A1或3B1或3C1或3D1或3二、填空题13若执行如图3所示的框图,输入,则输出的数等于 。14函数f(x)=loga(x1)+2(a0且a1)过定点A,则点A的坐标为15直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且AOB是直角三角形(O是坐标原点),则点P(a,b)与点(1,0)之间距离的最小值为16已知f(x)x(exaex)为偶函数,则a_17“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负现在甲乙丙三人一起玩“黑白配”游戏设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是18函数f(x)=x2ex在区间(a,a+1)上存在极值点,则实数a的取值范围为三、解答题19已知函数f(x)=lnxkx+1(kR)()若x轴是曲线f(x)=lnxkx+1一条切线,求k的值;()若f(x)0恒成立,试确定实数k的取值范围20已知复数z1满足(z12)(1+i)=1i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z221已知函数f(x)=loga(1x)+loga(x+3),其中0a1(1)求函数f(x)的定义域;(2)若函数f(x)的最小值为4,求a的值22(本小题满分12分)设椭圆的离心率,圆与直线相切,为坐标原点.(1)求椭圆的方程;(2)过点任作一直线交椭圆于两点,记,若在线段上取一点,使得,试判断当直线运动时,点是否在某一定直一上运动?若是,请求出该定直线的方程;若不是,请说明理由.23设集合A=x|0xm3,B=x|x0或x3,分别求满足下列条件的实数m的取值范围(1)AB=;(2)AB=B24从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试()若选出的4名同学是同一性别,求全为女生的概率;()若设选出男生的人数为X,求X的分布列和EX东河区第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为: =,a2=b2+c2,c=,椭圆的离心率为:e=故选:A【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力2 【答案】C【解析】试题分析:根据题中“孤立元素”定义可知,若集合B中不含孤立元素,则必须没有三个连续的自然数存在,所有B的可能情况为:,共6个。故选C。考点:1.集合间关系;2.新定义问题。 3 【答案】B【解析】由题知,通项公式为,令得,故选B答案:B 4 【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。故答案为:A5 【答案】D111【解析】试题分析:.考点:分段函数求值6 【答案】B【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),=(2,0,1),=(2,2,0),设异面直线BE与AC所成角为,则cos=故选:B7 【答案】A【解析】解:f(x)=x23x+4与g(x)=2x+m在0,3上是“关联函数”,故函数y=h(x)=f(x)g(x)=x25x+4m在0,3上有两个不同的零点,故有,即,解得m2,故选A【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题8 【答案】 D【解析】解:设|AF1|=x,|AF2|=y,点A为椭圆C1: +y2=1上的点,2a=4,b=1,c=;|AF1|+|AF2|=2a=4,即x+y=4;又四边形AF1BF2为矩形,+=,即x2+y2=(2c)2=12,由得:,解得x=2,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|AF1|=yx=2,2n=2c=2,双曲线C2的离心率e=故选D【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题9 【答案】第10【答案】D【解析】解:P(sincos,2cos)位于第二象限,sincos0,cos0,sin0,是第四象限角故选:D【点评】本题考查了象限角的三角函数符号,属于基础题11【答案】B【解析】解:an=(1)n(3n2),S11=()+(a2+a4+a6+a8+a10)=(1+7+13+19+25+31)+(4+10+16+22+28)=16,S20=(a1+a3+a19)+(a2+a4+a20)=(1+7+55)+(4+10+58)=+=30,S11+S20=16+30=14故选:B【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用12【答案】A【解析】解:两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,所以=,解得 a=3,或a=1故选:A二、填空题13【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则。14【答案】(2,2) 【解析】解:loga1=0,当x1=1,即x=2时,y=2,则函数y=loga(x1)+2的图象恒过定点 (2,2)故答案为:(2,2)【点评】本题考查对数函数的性质和特殊点,主要利用loga1=0,属于基础题15【答案】 【解析】解:AOB是直角三角形(O是坐标原点),圆心到直线ax+by=1的距离d=,即d=,整理得a2+2b2=2,则点P(a,b)与点Q(1,0)之间距离d=,点P(a,b)与点(1,0)之间距离的最小值为故答案为:【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力16【答案】【解析】解析:f(x)是偶函数,f(x)f(x)恒成立,即(x)(exaex)x(exaex),a(exex)(exex),a1.答案:117【答案】 【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目18【答案】(3,2)(1,0) 【解析】解:函数f(x)=x2ex的导数为y=2xex+x2ex =xex (x+2),令y=0,则x=0或2,2x0上单调递减,(,2),(0,+)上单调递增,0或2是函数的极值点,函数f(x)=x2ex在区间(a,a+1)上存在极值点,a2a+1或a0a+1,3a2或1a0故答案为:(3,2)(1,0)三、解答题19【答案】 【解析】解:(1)函数f(x)的定义域为(0,+),f(x)=k=0,x=,由ln1+1=0,可得k=1;(2)当k0时,f(x)=k0,f(x)在(0,+)上是增函数;当k0时,若x(0,)时,有f(x)0,若x(,+)时,有f(x)0,则f(x)在(0,)上是增函数,在(,+)上是减函数k0时,f(x)在(0,+)上是增函数,而f(1)=1k0,f(x)0不成立,故k0,f(x)的最大值为f(),要使f(x)0恒成立,则f()0即可,即lnk0,得k1【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识20【答案】 【解析】解:z1=2i设z2=a+2i(aR)z1z2=(2i)(a+2i)=(2a+2)+(4a)iz1z2是实数4a=0解得a=4所以z2=4+2i【点评】本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为021【答案】 【解析】解:(1)要使函数有意义:则有,解得3x1,所以函数f(x)的定义域为(3,1)(2)f(x)=loga(1x)+loga(x+3)=loga(1x)(x+3)=,3x1,0(x+1)2+44,0a1,loga4,即f(x)min=loga4;由loga4=4,得a4=4,a=【点评】本题考查对数函数的图象及性质,考查二次函数的最值求解,考查学生分析问题解决问题的能力22【答案】(1);(2)点在定直线上.【解析】试题解析:(1)由,又,解得,所以椭圆的方程为.设点的坐标为,则由,得,解得又,从而,故点在定直线上.考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系.23【答案】 【解析】解:A=x|0xm3,A=x|mxm+3,(1)当AB=时;如图:则,解得m=0,(2)当AB=B时,则AB,由上图可得,m3或m+30,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论