




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 计数原理章末分层突破自我校对排列数公式组合数公式组合数性质通项公式二项式系数性质两个计数原理的应用分类计数原理和分步计数原理是本部分内容的基础,对应用题的考查,经常要对问题进行分类或者分步进而分析求解(1)“分类”表现为其中任何一类均可独立完成所给事情“分步”表现为必须把各步骤均完成,才能完成所给事情,所以准确理解两个原理的关键在于弄清分类计数原理强调完成一件事情的几类办法互不干扰,不论哪一类办法中的哪一种方法都能够独立完成事件(2)分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法. 王华同学有课外参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读(1)若他从这些参考书中带一本去图书馆,有多少种不同的带法?(2)若带外语、数学、物理参考书各一本,有多少种不同的带法?(3)若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?【精彩点拨】解决两个原理的应用问题,首先应明确所需完成的事情是什么,再分析每一种做法使这件事是否完成,从而区分加法原理和乘法原理【规范解答】(1)完成的事情是带一本书,无论带外语书、还是数学书、物理书,事情都已完成,从而确定为应用分类计数原理,结果为54312(种)(2)完成的事情是带3本不同学科的参考书,只有从外语、数学、物理书中各选1本后,才能完成这件事,因此应用分步计数原理,结果为54360(种)(3)选1本外语书和选1本数学书应用分步计数原理,有5420种选法;同样,选外语书、物理书各1本,有5315种选法;选数学书、物理书各1本,有4312种选法即有三类情况,应用分类计数原理,结果为20151247(种)应用两个计数原理解决应用问题时主要考虑三方面的问题:(1)要做什么事;(2)如何去做这件事;(3)怎样才算把这件事完成了.并注意计数原则:分类用加法,分步用乘法.再练一题1.如图11为电路图,从A到B共有_条不同的线路可通电图11【解析】先分三类第一类,经过支路有3种方法;第二类,经过支路有1种方法;第三类,经过支路有224(种)方法,所以总的线路条数N3148.【答案】8排列、组合的应用排列、组合应用题是高考的重点内容,常与实际问题结合命题,要认真审题,明确问题本质,利用排列、组合的知识解决(1)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲不到银川,乙不到西宁,共有多少种不同派遣方案?(2)在高三一班元旦晚会上,有6个演唱节目,4个舞蹈节目当4个舞蹈节目要排在一起时,有多少种不同的节目安排顺序?当要求每2个舞蹈节目之间至少安排1个演唱节目时,有多少种不同的节目安排顺序?若已定好节目单,后来情况有变,需加上诗朗诵和快板2个栏目,但不能改变原来节目的相对顺序,有多少种不同的节目演出顺序?【精彩点拨】按照“特殊元素先排法”分步进行,先特殊后一般【规范解答】(1)因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:若甲乙都不参加,则有派遣方案A种;若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有A种方法,所以共有3A种方法;若乙参加而甲不参加同理也有3A种;若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余学生到另两个城市有A种,共有7A种方法所以共有不同的派遣方法总数为A3A3A7A4 088种(2)第一步,先将4个舞蹈节目捆绑起来,看成1个节目,与6个演唱节目一起排,有A5 040种方法;第二步,再松绑,给4个节目排序,有A24种方法根据分步计数原理,一共有5 04024120 960种第一步,将6个演唱节目排成一列(如下图中的“”),一共有A720种方法第二步,再将4个舞蹈节目排在一头一尾或两个节目中间(即图中“”的位置),这样相当于7个“”选4个来排,一共有A7654840种根据分步计数原理,一共有720840604 800种若所有节目没有顺序要求,全部排列,则有A种排法,但原来的节目已定好顺序,需要消除,所以节目演出的方式有A132种排法解排列、组合应用题的解题策略1特殊元素优先安排的策略2合理分类和准确分步的策略3排列、组合混合问题先选后排的策略4正难则反、等价转化的策略5相邻问题捆绑处理的策略6不相邻问题插空处理的策略7定序问题除序处理的策略8分排问题直排处理的策略9“小集团”排列问题中先整体后局部的策略10构造模型的策略简单记成:合理分类,准确分步;特殊优先,一般在后;先取后排,间接排除;集团捆绑,间隔插空;抽象问题,构造模型;均分除序,定序除序再练一题2在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取2个数字,可组成多少个不同的五位偶数?【解】共分两类,第一类,五位数中不含数字零第一步,选出5个数字,有CC种选法第二步,排成偶数先排末位数,有A种排法,再排其他四位数字,有A种排法N1CCAA.第二类,五位数中含有数字零第一步,选出5个数字,共有CC种选法第二步,分为两类:末位排0,有AA种排列方法;末位不排0,这时末位数有C种选法,而0不能排在首位,0有A种排法,其余3个数字有A种排法,N2CC(AAAA)符合条件的偶数有NN1N2CCAACC(AAAA)4 560(个)二项式定理问题的处理方法和技巧对于二项式定理的考查常出现两类问题,一类是直接运用通项公式来求特定项另一类,需要运用转化思想化归为二项式定理来处理问题(1)(2016淮安高二检测)已知(1xx2)n(nN*)的展开式中没有常数项,且2n8,则n_.(2)设(3x1)6a6x6a5x5a4x4a3x3a2x2a1xa0,则a6a4a2a0的值为_【精彩点拨】(1)利用二项式定理的通项求待定项;(2)通过赋值法求系数和【规范解答】(1)n展开式的通项是Tr1CxnrrCxn4r,r0,1,2,n,由于(1xx2)n的展开式中没有常数项,所以Cxn4r,xCxn4rCxn4r1和x2Cxn4rCxn4r2都不是常数,则n4r0,n4r10,n4r20,又因为2n8,所以n2,3,4,6,7,8,故取n5.(2)令x1,得a6a5a4a3a2a1a02664.令x1,得a6a5a4a3a2a1a0(4)64 096.两式相加,得2(a6a4a2a0)4 160,所以a6a4a2a02 080.【答案】(1)5(2)2 0801解决与二项展开式的项有关的问题时,通常利用通项公式2解决二项展开式项的系数(或和)问题常用赋值法再练一题3在(1x)6(1y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)f(2,1)f(1,2)f(0,3)_. 【导学号:29440032】【解析】因为f(m,n)CC,所以f(3,0)f(2,1)f(1,2)f(0,3)CCCCCCCC120.【答案】120排列、组合中的分组与分配问题n个不同元素按照条件分配给k个不同的对象称为分配问题,分定向分配与不定向分配两种问题;将n个不同元素按照某种条件分成k组,称为分组问题,分组问题有不平均分组、平均分组、部分平均分组三种情况分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同是不区分的,而后者即使2组元素个数相同,但因所属对象不同,仍然是可区分的对于后者必须先分组再排列按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;(7)甲得1本,乙得1本,丙得4本【精彩点拨】这是一个分配问题,解题的关键是搞清事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏【规范解答】(1)无序不均匀分组问题先选1本有C种选法,再从余下的5本中选2本有C种选法,最后余下3本全选有C种选法故共有CCC60(种)(2)有序不均匀分组问题由于甲、乙、丙是不同的三人,在第(1)问基础上,还应考虑再分配,共有CCCA360(种)(3)无序均匀分组问题先分三步,则应是CCC种方法,但是这里出现了重复不妨记6本书为A,B,C,D,E,F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则CCC种分法中还有(AB,EF,CD),(AB,CD,EF),(CD,AB,EF),(CD,EF,AB),(EF,CD,AB),(EF,AB,CD),共A种情况,而这A种情况仅是AB,CD,EF的顺序不同,因此只能作为一种分法,故分配方式有15(种)(4)有序均匀分组问题在第(3)问基础上再分配给3个人,共有分配方式ACCC90(种)(5)无序部分均匀分组问题共有15(种)(6)有序部分均匀分组问题在第(5)问基础上再分配给3个人,共有分配方式A90(种)(7)直接分配问题甲选1本有C种方法,乙从余下5本中选1本有C种方法,余下4本留给丙有C种方法共有CCC30(种)均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关,有序分组要在无序分组的基础上乘以分组数的阶乘数.再练一题4有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行如果取出的4张卡片所标数字之和等于10,则不同的排法共有多少种?【解】取出的4张卡片所标数字之和等于10,共有3种情况:1 144,2 233,1 234.所取卡片是1 144的共有A种排法所取卡片是2 233的共有A种排法所取卡片是1 234,则其中卡片颜色可为无红色,1张红色,2张红色,3张红色,全是红色,共有排法ACACACAA16A种所以共有18A432种.1(2015广东高考)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了_条毕业留言(用数字作答)【解析】A40391 560.【答案】1 5602(2016全国卷)(2x)5的展开式中,x3的系数是_(用数字填写答案)【解析】(2x)5展开式的通项为Tr1C(2x)5r()r25rCx5.令53,得r4.故x3的系数为254C2C10.【答案】103(2015全国卷)(ax)(1x)4的展开式中x的奇数次幂项的系数之和为32,则a_.【解析】设(ax)(1x)4a0a1xa2x2a3x3a4x4a5x5.令x1,得(a1)24a0a1a2a3a4a5.令x1,得0a0a1a2a3a4a5.,得16(a1)2(a1a3a5)232,a3.【答案】34(2015安徽高考)7的展开式中x5的系数是_(用数字填写答案)【解析】Tr1C(x3)7rrCx214r,令214r5,得r4,C35.故展开式中x5的系数为35.【答案】355(2015福建高考)(x2)5的展开式中,x2的系数等于_(用数字作答)【解析】(x2)5展开式的通项Tr1Cx5r2r,令5r2,得r3.x2的系数为C2380.【答案】806(2016北京高考)在(12x)6的展开式中,x2的系数为_(用数字作答)【解析】由二项式定理得含x2的项为C(2x)260x2.【答案】60章末综合测评(一)计数原理(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分请把答案填写在题中横线上)1将(xq)(xq1)(xq2)(x19)写成A的形式是_【解析】由式子的形式可知(xq)为最大因子,共有20q个因式连乘,故(xq)(xq1)(xq2)(x19)A.【答案】A2(a1a2)(b1b2b3)(c1c2c3c4)的展开式中有_项【解析】要得到项数分3步:第1步,从第一个因式中取一个因子,有2种取法;第2步,从第二个因式中取一个因子,有3种取法;第3步,从第三个因式中取一个因子,有4种取法由分步计数原理知共有23424项【答案】243某人有3个不同的电子邮箱,他要发5封电子邮件,不同的发送方法有_种【解析】每封电子邮件都有3种发送方式,共有35种不同的发送方法【答案】3546把椅子摆成一排,3人随机就座,任何两人不相邻的坐法共有_种【解析】这是一个元素不相邻问题,采用插空法,AC24.【答案】245已知n的展开式中的常数项是第7项,则正整数n的值为_【解析】T7C(2x3)n66C2n6x3n24.由3n240,得n8.【答案】86在x(1x)6的展开式中,含x3项的系数为_【解析】x(1x)6的展开式中x3项的系数与(1x)6的展开式中x2项的系数相同,故其系数为C15.【答案】157若二项式7的展开式中的系数是84,则实数a_. 【导学号:29440033】【解析】展开式中含的项是T6C(2x)25C22a5x3,故含的项的系数是C22a584,解得a1.【答案】18若CxCx2Cxn能被7整除,则x,n的值可能为_(填序号)x4,n3;x4,n4;x5,n4;x6,n5.【解析】CxCx2Cxn(1x)n1,结合可知,仅有符合题意【答案】95名乒乓球队员中,有2名老队员和3名新队员现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1,2号中至少有1名新队员的排法有_种(用数字作答)【解析】(1)当有1名老队员时,其排法有CCA36(种);(2)当有2名老队员时,其排法有CCCA12(种),共有361248(种)【答案】4810(2015全国卷改编)(x2xy)5的展开式中,x5y2的系数为_【解析】法一:(x2xy)5(x2x)y5,含y2的项为T3C(x2x)3y2.其中(x2x)3中含x5的项为Cx4xCx5.所以x5y2的系数为CC30.法二:(x2xy)5为5个x2xy之积,其中有两个取y,两个取x2,一个取x即可,所以x5y2的系数为CCC30.【答案】3011一条街上有8盏灯,为节约用电,晚上只开5盏灯,且规定相邻的灯不能都不亮,两头的灯都要亮,那么不同的亮灯方案有_种. 【解析】在亮着的5盏灯间有4个空档,选3个空档放3个不亮的灯,有C种方法【答案】412从正方体ABCDA1B1C1D1的8个顶点中选取4个作为四面体的顶点,可得到的不同四面体的个数为_【解析】在正方体中,6个面和6个对角面上的四个点不能构成四面体,故共有C1258个不同的四面体【答案】5813某省高中学校自实施素质教育以来,学生社团得到迅猛发展某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为_【解析】设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有CA种方法,这时共有CCA种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C种方法,甲与丁、戊分配到其他三个社团中有A种方法,这时共有CA种参加方法综合(1)(2),共有CCACA180(种)参加方法【答案】180种14将数字1,2,3,4,5,6排成一列,记第i个数为ai(i1,2,6)若a11,a33,a55,a1a3a5,则不同的排列方法有_种(用数字作答)【解析】第一类:a12时,a34,a56或a35,a56,共有2A12(种)第二类:a13时,a34,a56或a35,a56,共有2A12(种)第三类:a14时,a35,a56,共有A6(种)所以总的排列方法有1212630(种)【答案】30二、解答题(本大题共6小题,共90分解答时应写出文字说明、证明过程或演算步骤)15(本小题满分14分)将5个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有多少种? 【导学号:29440034】【解】就编号为1的盒子中所放的球的个数分类:第一类,当编号为1的盒子中放入一个球时,相应的放法数有C5种;第二类,当编号为1的盒中放入2个球时,相应的放法数有C10种;第三类,当编号为1的盒子中放入3个球时,相应的放法数有C10种根据分类计数原理可知,满足题意的放法种数是5101025.16(本小题满分14分)男运动员6名,女运动员4名,其中男女队长各1人,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男3名,女2名;(2)队长至少有1人参加;(3)至少有1名女运动员;(4)既要有队长,又要有女运动员【解】(1)CC120种不同的选派方法(2)分为两类:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年市场调研与分析能力考试试卷及答案
- 农村数字金融生态-洞察及研究
- 2025年美术教育基础与创新实践的考试试卷及答案
- 2025年计算机程序设计考试试卷及答案
- 2025年城市环境管理与保护专业能力测评试题及答案
- 2025年电子信息工程师资格考试试卷及答案
- 讲故事比赛演讲稿
- 2024年度浙江省二级造价工程师之建设工程造价管理基础知识综合检测试卷A卷含答案
- 2024年度浙江省二级造价工程师之建设工程造价管理基础知识题库练习试卷B卷附答案
- 早期矫治培训课件
- 2025-2030中国动物狂犬病疫苗行业发展现状及趋势前景分析报告
- 2025年云南省中考语文试卷真题
- 2025春季学期国开电大专科《机械制图》一平台在线形考(形成性任务1至4)试题及答案
- 文具店创业计划书文具店创业准备计划书范文
- 银川永宁县社区工作者招聘笔试真题2024
- 浙江省强基联盟2024-2025学年高二下学期5月联考试题 物理 PDF版含解析
- 企业政策宣讲活动方案
- 自来水考试试题大题及答案
- (2025)发展对象考试题库与答案
- 北京师范大学《微积分(2)》2023-2024学年第二学期期末试卷
- CJ/T 410-2012隔油提升一体化设备
评论
0/150
提交评论