2018高考数学复习解析几何课时达标检测五十圆锥曲线中的最值范围证明问题理.docx_第1页
2018高考数学复习解析几何课时达标检测五十圆锥曲线中的最值范围证明问题理.docx_第2页
2018高考数学复习解析几何课时达标检测五十圆锥曲线中的最值范围证明问题理.docx_第3页
2018高考数学复习解析几何课时达标检测五十圆锥曲线中的最值范围证明问题理.docx_第4页
2018高考数学复习解析几何课时达标检测五十圆锥曲线中的最值范围证明问题理.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时达标检测(五十) 圆锥曲线中的最值、范围、证明问题一、全员必做题1已知椭圆E:1(ab0)的一个焦点为F2(1,0),且该椭圆过定点M.(1)求椭圆E的标准方程;(2)设点Q(2,0),过点F2作直线l与椭圆E交于A,B两点,且,2,1,以QA,QB为邻边作平行四边形QACB,求对角线QC长度的最小值解:(1)由题易知c1,1,又a2b2c2,解得b21,a22,故椭圆E的标准方程为y21.(2)设直线l:xky1,由得(k22)y22ky10,4k24(k22)8(k21)0.设A(x1,y1),B(x2,y2),则可得y1y2,y1y2.(x1x24,y1y2),|2|216,由此可知,|2的大小与k2的取值有关由可得y1y2,(y1y20)从而,由2,1得,从而2,解得0k2.令t,则t,|28t228t1682,当t时,|QC|min2.2.已知点F为抛物线E:y22px(p0)的焦点,点A(2,m)在抛物线E上,且|AF|3.(1)求抛物线E的方程;(2)已知点G(1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切解:(1)由抛物线的定义得|AF|2.因为|AF|3,即23,解得p2,所以抛物线E的方程为y24x.(2)证明:设以点F为圆心且与直线GA相切的圆的半径为r.因为点A(2,m)在抛物线E:y24x上,所以m2.由抛物线的对称性,不妨设A(2,2)由A(2,2),F(1,0)可得直线AF的方程为y2(x1)由得2x25x20,解得x2或x,从而B.又G(1,0),故直线GA的方程为2x3y20,从而r .又直线GB的方程为2x3y20,所以点F到直线GB的距离dr.这表明以点F为圆心且与直线GA相切的圆必与直线GB相切3(2017合肥模拟)已知中心在原点,焦点在y轴上的椭圆C,其上一点P到两个焦点F1,F2的距离之和为4,离心率为.(1)求椭圆C的方程;(2)若直线ykx1与曲线C交于A,B两点,求OAB面积的取值范围解:(1)设椭圆的标准方程为1(ab0),由条件知,解得a2,c,b1,故椭圆C的方程为x21.(2)设A(x1,y1),B(x2,y2),由得(k24)x22kx30,故x1x2,x1x2,设OAB的面积为S,由x1x20,yt在t3,)上单调递增,t,0,0b0)的右焦点F(1,0)作直线l与椭圆C交于不同的两点A,B,设|FA|FB|,T(2,0)(1)求椭圆C的方程;(2)若12,求ABT中AB边上中线长的取值范围解:(1)e ,c1,a,b1,即椭圆C的方程为:y21.(2)当直线的斜率为0时,显然不成立设直线l:xmy1,A(x1,y1),B(x2,y2),联立得(m22)y22my10,则y1y2,y1y2,由|FA|FB|,得y1y2,2,m2,又AB边上的中线长为 | | .2如图所示,已知直线l过点M(4,0)且与抛物线y22px(p0)交于A,B两点,以弦AB为直径的圆恒过坐标原点O.(1)求抛物线的标准方程;(2)设Q是直线x4上任意一点,求证:直线QA,QM,QB的斜率依次成等差数列解:(1)设直线l的方程为xky4,代入y22px得y22kpy8p0.设A(x1,y1),B(x2,y2),则有y1y22kp,y1y28p,而AB为直径,O为圆上一点,所以0,故0x1x2y1y2(ky14)(ky24)8pk2y1y24k(y1y2)168p,即08k2p8k2p168p,得p2,所以抛物线方程为y24x.(2)设Q(4,t)由(1)知y1y24k,y1y216,所以yy(y1y2)22y1y216k232.因为kQA,kQB,kQM,所以kQAkQB442kQM.所以直线QA,QM,QB的斜率依次成等差数列三、冲刺满分题1.已知椭圆C:1(0b1),则12(当且仅当t2时取等号),所以的最大值为.2(2017沈阳质量监测)已知椭圆1(ab0)的左、右焦点分别为F1,F2,且|F1F2|6,直线ykx与椭圆交于A,B两点(1)若AF1F2的周长为16,求椭圆的标准方程;(2)若k,且A,B,F1,F2四点共圆,求椭圆离心率e的值;(3)在(2)的条件下,设P(x0,y0)为椭圆上一点,且直线PA的斜率k1(2,1),试求直线PB的斜率k2的取值范围解:(1)由题意得c3,根据2a2c16,得a5.结合a2b2c2,解得a225,b216.所以椭圆的方程为1.(2)法一:由得x2a2b20.设A(x1,y1),B(x2,y2)所以x1x20,x1x2,由AB,F1F2互相平分且共圆,易知,AF2BF2,因为(x13,y1),(x23,y2),所以(x13)(x23)y1y2x1x290.即x1x28,所以有8,结合b29a2,解得a212(a26舍去),所以离心率e.(若设A(x1,y1),B(x1,y1)相应给分)法二:设A(x1,y1),又AB,F1F2互相平分且共圆,所以AB,F1F2是圆的直径,所以xy9,又由椭圆及直线方程综合可得:由前两个方程解得x8,y1,将其代入第三个方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论