




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南阳市20182019学年秋期高一期中质量评估数学试题一.选择题:本大题共60分,每小题5分。1.已知:如图,集合为全集,则图中阴影部分表示的集合是A. U B. U C. U D. U【答案】C【解析】因为,所以图中阴影部分表示的集合是 U,选C.2.已知集合,则A. B. C. D. 【答案】A【解析】【分析】解不等式求得集合A,求定义域得出集合B,再求AB【详解】集合A=x|x22x30=x|1x3,B=y|y=lgx=y|y ,则AB=x|0x3=-1,3故选:A【点睛】本题考查了集合的化简与运算问题,是基础题与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集(2)看这些元素满足什么限制条件(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性3.已知函数 ,则的定义域为( )A. B. C. D. 【答案】D【解析】要使函数 有意义,则 ,解得 的定义域为,由,解得,的定义域为,故选D.【方法点晴】本题主要考查函数的定义域、不等式的解法,属于中档题. 定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.4.函数的零点所在的区间为( )A. B. C. D. 【答案】B【解析】由于函数的是单调递增函数,且根据零点存在定理可知,函数的零点所在的区间为,故选B.5.已知是定义在上的偶函数,那么的最大值是( )A. 0 B. C. D. 1【答案】C【解析】f(x)ax2bx是定义在a1,2a上的偶函数,a12a0,a.又f(x)f(x),b0,所以.故选C.6.不等式的解集为,则不等式的解集为( )A. B. C. D. 【答案】A【解析】【分析】根据题意,分析可得方程(x+b)(a1)x+(1b)=0的两根为(1)和3,则有,解可得a、b的值,进而可得不等式x2+bx2a0即x23x100,解可得不等式的解集,即可得答案【详解】根据题意,不等式(x+b)(a1)x+(1b)0的解集为(,1)(3,+),则方程(x+b)(a1)x+(1b)=0的两根为(1)和3,则有,解可得:a=5,b=3,则不等式x2+bx2a0即x23x100,解可得:2x5,即不等式x2+bx2a0的解集为(2,5);故选:A【点睛】这个题目考查的是分式不等式的解法,一般分式不等式的解法步骤为:先将不等号的一边化为0,再分式化整式,转化为二次,结合二次函数的图像得到解集.7.已知函数是定义在上的增函数,则实数的取值范围是A. B. C. D. 【答案】A【解析】【分析】利用分段函数的单调性,列出不等式组,求解即可【详解】由题意函数是定义在R上的增函数,可得:解之得:0a1故选:A【点睛】本题考查分段函数的应用,是基本知识的考查分段函数单调性,首先满足每一段上的单调性,其次满足整体的单调性.8.已知,则的大小关系是A. B. C. D. 【答案】D【解析】【分析】分别根据指对函数的性质和运算性质得到各自的范围,进而得到结果.【详解】显然,又因为,故故答案为:D.【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.9.已知:,则A. ,无最小值 B. ,无最大值C. , D. ,【答案】C【解析】【分析】求出函数的定义域,判断函数的单调性,然后求解最值即可【详解】的定义域为:0,1,因为f(x)在0,1上单调递增,所以f(x)max=1,f(x)min=1故选:C【点睛】本题考查函数的最值的求法,函数的单调性的应用,注意函数的定义域10.设函数若,则的取值范围是A. B. C. D. 【答案】D【解析】试题分析:由已知得或,解得或,故选D。考点:本题主要考查分段函数的概念,指数函数、幂函数的性质。点评:简单题,解不等式,需明确具体内容是什么,通过分段讨论,分别解指数不等式、无理不等式即得。也可以利用图象法。11.若时,不等式恒成立,则的取值范围是A. B. C. D. 【答案】C【解析】【分析】根据二次函数和对数函数的图象和性质,由已知中当x(1,2)时,不等式(x1)2logax恒成立,则y=logax必为增函数,且当x=2时的函数值不小于1,由此构造关于a的不等式,解不等式即可得到答案【详解】函数y=在区间(1,2)上单调递增,当x(1,2)时,y=(0,1),若不等式恒成立,则a1且1loga2即a(1,2,故选:C【点睛】本题考查的知识点是对数函数的单调性与特殊点,其中根据二次函数和对数函数的图象和性质,结合已知条件构造关于a的不等式,是解答本题的关键12.已知函数,则关于的方程的根的个数是A. B. C. D. 【答案】C【解析】【分析】利用函数可得到函数的图像,方程f2(x)2f(x)=0的根,f(x)=0或f(x)=2,分别求得f(x)=0和f(x)=2时对应的x值的个数即可.【详解】根据题干得到函数的图像:函数利用函数,及f2(x)-2f(x)=0解方程求出方程根的个数即可方程f2(x)2f(x)=0的根,f(x)=0或f(x)=2,当f(x)=0时,解得:x=1,或x=0,或x=2,当f(x)=2时,|lg|x1|=2,可得x=101或x=99或x=1.01或x=0.99,故方程有7个解,故选:C【点睛】本题考查函数的零点的求法,分段函数的应用,考查分析问题解决问题的能力函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用二.填空题:本大题共20分,每小题5分。13.函数的单调增加区间是_.【答案】【解析】【分析】求得函数的定义域,设t=x2+3x+4,由t0,可得1x4,则函数y=,运用复合函数的单调性:同增异减,以及二次函数和幂函数的单调性,即可得到所求单调区间【详解】函数,设t=x2+3x4,由t0,可得(,41,+),则函数y=,由t=x2+3x4在1,+)递增,故答案为:(1,+)(或写成1,+)【点睛】本题考查函数的单调区间的求法,注意运用复合函数的单调性:同增异减,以及二次函数和幂函数的单调性,考查运算能力,属于中档题14.定义在上的函数,满足,则_.【答案】 -2【解析】试题分析:考点: 本小题主要考查分段函数的应用。点评:求分段函数的函数值的方法:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止。15.若幂函数在上是减函数,则k=_.【答案】【解析】【分析】幂函数y=(k22k2)xk在(0,+)上是减函数,得到k22k2=1,且k0,由此能求出k【详解】幂函数y=(k22k2)xk在(0,+)上是减函数,k22k2=1,得k=3,或k=1,由题意k=1故答案为:1【点睛】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题16.若函数有最小值,则的取值范围是_【答案】【解析】【分析】当0a1时,没有最小值,当a1时,即x2ax+10有解,=a240,解得a2,由此能求出a的取值范围【详解】可求原题干的反面:函数f(x)=loga(x2ax+1)(a0且a1)没有最小值,当0a1时,没有最小值,当a1时,即x2ax+10有解,=a240,解得a2,a的取值范围是(0,1)2,+),故函数有最小值则范围是:.故答案为:【点睛】本题考查实数的取值范围的求法,考查对数函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题三.解答题(本大题共70分):17.已知集合.(1)求;(2)已知集合,若,求实数的取值范围.【答案】(1)(2)【解析】试题分析:首先化简集合,求出,再利用数轴求并集;由,先考虑时,此时,当时,解析:(1),(2)当时,此时;当时,则综上所述,的取值范围是.点睛:解指数不等式我们可以求出集合,解对数不等式我们可以求出集合,再由集合补集的运算规则,求出,进而由集合交集和并集的运算法则,即可得到答案,对于我们分和两种情况,分别求出对应的实数的取值,最后综合讨论结果,即可得到答案。18.计算下面两个式子的值(1) (2)若,试用表示出【答案】(1);(2)【解析】【分析】(1)根据指对函数的运算性质得到结果即可;(2).【详解】原式= = = (2).【点睛】这个题目考查了指对函数的运算性质,属于基础题型.19.设函数的定义域为(1)若,求的取值范围;(2)求的最大值与最小值,并求出最值时对应的的值【答案】(1);(2),最小值,最大值 .【解析】试题分析:(1)根据定义域为,利用对数函数的单调性确定函数的取值范围;(2)根据对数的运算法则化简函数利用换元法将函数转化为关于的一元二次函数,利用二次函数的性质求函数的最值.试题解析:(1)的取值范围为区间(2)记在区间是减函数,在区间是增函数当即时,有最小值;当即时,有最大值20.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图;B产品的利润与投资的算术平方根成正比,其关系如图.(注:利润和投资单位:万元)(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?【答案】(1);(2)当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.【解析】试题分析:设出函数解析式,根据图象,即可求得答案;确定总利润函数,换元,利用配方法可求最值;解析:(1)根据题意可设,。则f(x)0.25x(x0),g(x)2 (x0). (2)设B产品投入x万元,A产品投入(18x)万元,该企业可获总利润为y万元则y (18x)2,0x18令t,t0,3,则y (t28t18) (t4)2. 所以当t4时,ymax8.5, 此时x16,18x2.所以当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.21.已知定义在上的函数对任意,恒有, 且当时,.(1)判断在上的单调性并加以证明;(2)若,求的取值范围.【答案】(1)见解析;(2)【解析】【分析】(1) 设且, 则,根据题干可得到函数值,进而得到结果;(2) 由得,解出即可.【详解】(1)设且,则 且, ,即,在上单调递减(2)令,则. 由得, ,解得 故的取值范围是【点睛】这个题目考查了函数单调性的证明的定义法,以及利用函数的单调性解不等式的应用,证明函数单调性只能用定义法.解不等式,可以直接写出函数的解析式,解出即可,或者可以根据函数的单调性,直接比较自变量的大小即可.22.已知函数是定义在R上的奇函数.()求实数a的值.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银冶炼过程中的生产调度优化策略实施方法考核试卷
- 钾肥制造与应用技术考核试卷
- 铁路工程建筑光环境设计考核试卷
- 橡胶工业自动化与信息化技术考核试卷
- 金属工艺品的产业升级路径研究考核试卷
- 胶合板生产过程中的安全培训与教育考核试卷
- 肺呼吸科学课件
- 儿童口腔健康保护指南
- 突发公共卫生事件应急响应体系
- 肺部感染临床诊疗精要
- 门诊病历的与处方书写规范课件
- 大学生选课申请表
- GB∕T 24202-2021 光缆增强用碳素钢丝
- GB 18582-2020 建筑用墙面涂料中有害物质限量
- 十大直播电商基地企业参评报名表
- 道路施工安全应急方案
- 生产安全事故风险评估报告(参考模板)
- 消防安全工作台账表格汇总
- 广州旧城改造三元里文本
- 教科版五年级科学下册知识点总结与归纳(填空版)含答案
- 概率论与数理统计公式整理
评论
0/150
提交评论