




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题三 三个“二次”关系在高考中的应用陈燕春三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.锦囊妙计1.二次函数的基本性质(1)二次函数的三种表示法:y=ax2+bx+c;y=a(xx1)(xx2);y=a(xx0)2+n.(2)当a0,f(x)在区间p,q上的最大值M,最小值m,令x0= (p+q).若p,则f(p)=m,f(q)=M;若px0,则f()=m,f(q)=M;若x0q,则f(p)=M,f()=m;若q,则f(p)=M,f(q)=m.2.二次方程f(x)=ax2+bx+c=0的实根分布及条件.(1)方程f(x)=0的两根中一根比r大,另一根比r小af(r)0;(2)二次方程f(x)=0的两根都大于r (3)二次方程f(x)=0在区间(p,q)内有两根(4)二次方程f(x)=0在区间(p,q)内只有一根f(p)f(q)0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立.(5)方程f(x)=0两根的一根大于p,另一根小于q(pq).3.二次不等式转化策略(1)二次不等式f(x)=ax2+bx+c0的解集是:(,),+a0时,f()f() |+|+|,当a0时,f()|+|;(3)当a0时,二次不等式f(x)0在p,q恒成立或(4)f(x)0恒成立难点训练1.已知二次函数f(x)=4x22(p2)x2p2p+1,若在区间1,1内至少存在一个实数c,使f(c)0,则实数p的取值范围是_.解析:只需f(1)=2p23p+90或f(1)=2p2+p+10即3p或p1.p(3, ).答案:(3,)2.二次函数f(x)的二次项系数为正,且对任意实数x恒有f(2+x)=f(2x),若f(12x2)0,即又对任意的成立.特别地,取时,成立,得m0.则又所以函数在的最大值为0.于是当m0时,对任意的,恒成立.综上,m的取值范围是().5.浙江文设函数,()求的单调区间;()求所有实数,使对恒成立注:为自然对数的底数本题主要考查函数的单调性、导数运算法则、导数应用等基础知识,同时考查抽象概括、推理论证能力。满分15分。 ()解:因为,所以 由于,所以的增区间为,减区间为 ()证明:由题意得,由()知内单调递增,要使恒成立,只要,解得6.(2011年高考全国卷文科21)已知函数()证明:曲线()若求a的取值范围。【解析】(),故x=0处切线斜率,又即,当故曲线(),令,故7.(2011年高考天津卷文科19)(本小题满分14分)已知函数其中.()当时,求曲线在点处的切线方程;()当时,求的单调区间;()证明:对任意,在区间(0,1)内均在零点.【解析】()当时, ,所以曲线在点处的切线方程为.() 令,解得或,因为,以下分两种情况讨论:(1)若,则.当变化时, ,的变化情况如下表:+-+所以的单调递增区间是,;的单调递减区间是.+-+ (2)若,则.当变化时, ,的变化情况如下表:所以的单调递增区间是,;的单调递减区间是.所以在内存在零点.若,所以在内存在零点,所以,对任意,在区间(0,1)内均在零点.综上, 对任意,在区间(0,1)内均在零点.【命题意图】本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法.8(本小题满分分)已知函数,其中()若,求曲线在点处的切线方程;()若在区间上,恒成立,求的取值范围【解】()当时,所以曲线在点处的切线方程为,即()令,解得或针对区间,需分两种情况讨论:(1) 若,则当变化时,的变化情况如下表:增极大值减所以在区间上的最小值在区间的端点得到因此在区间上,恒成立,等价于即解得,又因为,所以(2) 若,则当变化时,的变化情况如下表:增极大值减极小值增所以在区间上的最小值在区间的端点或处得到因此在区间上,恒成立,等价于即解得或,又因为,所以综合(1),(2), 的取值范围为.9.已知函数(I)讨论的单调性;(II)设,证明:当时,;(III)若函数的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:(x0)0解:(I) (i)若单调增加.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 废油买卖合同协议书模板
- 委托代理协议转委托合同
- 培训学校老師合同协议书
- 工作协议书合同模板模板
- 虹之玉锦种苗供应合同2篇
- 2025年度熟食企业品牌形象设计与宣传合同
- 2025版户外墙体广告投放与代理服务合同
- 2025年停薪留职员工绩效考核与激励合同
- 2025版石材干挂施工合同范本修订版
- 2025年度危险品安全监测设备租赁及安装合同
- 离职交接事项协议书范本
- 【高考真题】海南省2025年高考真题物理(含答案)
- 体育教师自我介绍课件
- 银行员工职业操守课件
- 初中开学第一课心理健康课
- 艺康servsafe培训课件
- TDT1067-2021不动产登记数据整合建库技术规范
- 加气站投诉处理管理制度
- 2025-2030年再生铝行业市场现状供需分析及投资评估规划分析研究报告
- Unit 3 Same or Different?Section A 课件 人教版英语八年级上册
- 2025上海戏剧学院辅导员考试试题及答案
评论
0/150
提交评论