塔城市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
塔城市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
塔城市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
塔城市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
塔城市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

塔城市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如果ab,那么下列不等式中正确的是( )AB|a|b|Ca2b2Da3b32 若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( )A(0,+)B(0,2)C(1,+)D(0,1)3 设复数(是虚数单位),则复数( )A. B. C. D. 【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力4 已知圆C:x2+y2=4,若点P(x0,y0)在圆C外,则直线l:x0x+y0y=4与圆C的位置关系为( )A相离B相切C相交D不能确定5 已知命题p:xR,32x+10,有命题q:0x2是log2x1的充分不必要条件,则下列命题为真命题的是( )ApBpqCpqDpq6 已知全集I=1,2,3,4,5,6,7,8,集合M=3,4,5,集合N=1,3,6,则集合2,7,8是( )AMNBMNCIMINDIMIN7 连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,2),则的概率是( )ABCD8 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( )A2:1B5:2C1:4D3:19 与函数 y=x有相同的图象的函数是( )ABCD10设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x11函数y=2sin2x+sin2x的最小正周期( )ABCD212若实数x,y满足不等式组则2x+4y的最小值是( )A6B6C4D2二、填空题13若直线:与直线:垂直,则 .14已知函数,是函数的一个极值点,则实数 15若函数f(x)=,则f(7)+f(log36)=16在空间直角坐标系中,设,且,则 .17函数f(x)=ax+4的图象恒过定点P,则P点坐标是18i是虚数单位,化简: =三、解答题19已知集合P=x|2x23x+10,Q=x|(xa)(xa1)0(1)若a=1,求PQ;(2)若xP是xQ的充分条件,求实数a的取值范围20已知函数,(1)判断的单调性并且证明;(2)求在区间上的最大值和最小值21已知函数f(x)=sin(x+)+1(0,)的最小正周期为,图象过点P(0,1)()求函数f(x)的解析式;()设函数 g(x)=f(x)+cos2x1,将函数 g(x)图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m)内是单调函数,求实数m的最大值22(本小题满分12分)ABC的三内角A,B,C的对边分别为a,b,c,已知ksin Bsin Asin C(k为正常数),a4c.(1)当k时,求cos B;(2)若ABC面积为,B60,求k的值23全集U=R,若集合A=x|3x10,B=x|2x7,(1)求AB,(UA)(UB); (2)若集合C=x|xa,AC,求a的取值范围24已知椭圆的离心率,且点在椭圆上()求椭圆的方程;()直线与椭圆交于、两点,且线段的垂直平分线经过点求(为坐标原点)面积的最大值塔城市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:若a0b,则,故A错误;若a0b且a,b互为相反数,则|a|=|b|,故B错误;若a0b且a,b互为相反数,则a2b2,故C错误;函数y=x3在R上为增函数,若ab,则a3b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题2 【答案】D【解析】解:方程x2+ky2=2,即表示焦点在y轴上的椭圆故0k1故选D【点评】本题主要考查了椭圆的定义,属基础题3 【答案】A【解析】4 【答案】C【解析】解:由点P(x0,y0)在圆C:x2+y2=4外,可得x02+y02 4,求得圆心C(0,0)到直线l:x0x+y0y=4的距离d=2,故直线和圆C相交,故选:C【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题5 【答案】C【解析】解:命题p:xR,32x+10,命题p为真,由log2x1,解得:0x2,0x2是log2x1的充分必要条件,命题q为假,故选:C【点评】本题考查了充分必要条件,考查了对数,指数函数的性质,是一道基础题6 【答案】D【解析】解:全集I=1,2,3,4,5,6,7,8,集合M=3,4,5,集合N=1,3,6,MN=1,2,3,6,7,8,MN=3;IMIN=1,2,4,5,6,7,8;IMIN=2,7,8,故选:D7 【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得的概率是:;故选:A【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题8 【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r,则r2=4R2=,r=球心到圆锥底面的距离为=圆锥的高分别为和两个圆锥的体积比为: =1:3故选:D9 【答案】D【解析】解:A:y=的定义域0,+),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题10【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题11【答案】C【解析】解:函数y=2sin2x+sin2x=2+sin2x=sin(2x)+1,则函数的最小正周期为=,故选:C【点评】本题主要考查三角恒等变换,函数y=Asin(x+)的周期性,利用了函数y=Asin(x+)的周期为,属于基础题12【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点C时,直线y=x+的截距最小,此时z最小,由,解得,即C(3,3),此时z=2x+4y=23+4(3)=612=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键二、填空题13【答案】1【解析】试题分析:两直线垂直满足,解得,故填:1.考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,当两直线垂直时,需满足,当两直线平行时,需满足且,或是,当直线是斜截式直线方程时,两直线垂直,两直线平行时,.114【答案】5【解析】试题分析:考点:导数与极值15【答案】5 【解析】解:f(x)=,f(7)=log39=2,f(log36)=+1=,f(7)+f(log36)=2+3=5故答案为:516【答案】1【解析】试题分析:,解得:,故填:1.考点:空间向量的坐标运算17【答案】(0,5) 【解析】解:y=ax的图象恒过定点(0,1),而f(x)=ax+4的图象是把y=ax的图象向上平移4个单位得到的,函数f(x)=ax+4的图象恒过定点P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题18【答案】1+2i 【解析】解: =故答案为:1+2i三、解答题19【答案】 【解析】解:(1)当a=1时,Q=x|(x1)(x2)0=x|1x2则PQ=1(2)aa+1,Q=x|(xa)(xa1)0=x|axa+1xP是xQ的充分条件,PQ,即实数a的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型20【答案】(1)增函数,证明见解析;(2)最小值为,最大值为.【解析】试题分析:(1)在上任取两个数,则有,所以在上是增函数;(2)由(1)知,最小值为,最大值为.试题解析:在上任取两个数,则有,所以在上是增函数所以当时,当时,.考点:函数的单调性证明【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数,然后作差,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.121【答案】 【解析】解:()函数f(x)=sin(x+)+1(0,)的最小正周期为,=2,又由函数f(x)的图象过点P(0,1),sin=0,=0,函数f(x)=sin2x+1;()函数 g(x)=f(x)+cos2x1=sin2x+cos2x=sin(2x+),将函数 g(x)图象上所有的点向右平行移动个单位长度后,所得函数的解析式是:h(x)=sin2(x)+=sin(2x),x(0,m),2x(,2m),又由h(x)在区间(0,m)内是单调函数,2m,即m,即实数m的最大值为【点评】本题考查的知识点是正弦型函数的图象和性质,函数图象的平移变换,熟练掌握正弦型函数的图象和性质,是解答的关键22【答案】【解析】解:(1)sin Bsin Asin C,由正弦定理得bac,又a4c,b5c,即b4c,由余弦定理得cos B.(2)SABC,B60.acsin B.即ac4.又a4c,a4,c1.由余弦定理得b2a2c22accos B421224113.b,ksin Bsin Asin C,由正弦定理得k,即k的值为.23【答案】 【解析】解:(1)A=x|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论