已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
曲靖市高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 奇函数f(x)在(,0)上单调递增,若f(1)=0,则不等式f(x)0的解集是( )A(,1)(0,1)B(,1)(1,+)C(1,0)(0,1)D(1,0)(1,+)2 如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点给出下列命题不存在点D,使四面体ABCD有三个面是直角三角形不存在点D,使四面体ABCD是正三棱锥存在点D,使CD与AB垂直并且相等存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()ABCD3 已知i为虚数单位,则复数所对应的点在( )A第一象限B第二象限C第三象限D第四象限4 若函数则函数的零点个数为( )A1 B2 C3 D45 某几何体的三视图如图所示,该几何体的体积是( )ABCD6 已知函数f(x)=x(1+a|x|)设关于x的不等式f(x+a)f(x)的解集为A,若,则实数a的取值范围是( )ABCD7 极坐标系中,点P,Q分别是曲线C1:=1与曲线C2:=2上任意两点,则|PQ|的最小值为( )A1BCD28 设M=x|2x2,N=y|0y2,函数f(x)的定义域为M,值域为N,则f(x)的图象可以是( )ABCD9 记集合和集合表示的平面区域分别为1,2, 若在区域1内任取一点M(x,y),则点M落在区域2内的概率为( ) A B C D【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力10某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A程序流程图B工序流程图C知识结构图D组织结构图11已知函数f(x)=sin2(x)(0)的周期为,若将其图象沿x轴向右平移a个单位(a0),所得图象关于原点对称,则实数a的最小值为( )ABCD12在正方体中,是线段的中点,若四面体的外接球体积为,则正方体棱长为( )A2 B3 C4 D5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力二、填空题13如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点从A点测得 M点的仰角MAN=60,C点的仰角CAB=45以及MAC=75;从C点测得MCA=60已知山高BC=100m,则山高MN=m14已知过球面上 三点的截面和球心的距离是球半径的一半,且,则球表面积是_.15定义在上的函数满足:,则不等式(其中为自然对数的底数)的解集为 .16已知命题p:xR,x2+2x+a0,若命题p是假命题,则实数a的取值范围是(用区间表示)17已知关于的不等式的解集为,则关于的不等式的解集为_.18直线与抛物线交于,两点,且与轴负半轴相交,若为坐标原点,则面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.三、解答题19已知一个几何体的三视图如图所示()求此几何体的表面积;()在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长20在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q()求k的取值范围;()设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由21已知圆C:(x1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程22已知f(x)是定义在R上的奇函数,当x0时,f(x)=()x(1)求当x0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间23已知函数f(x)=ax2+bx+c,满足f(1)=,且3a2c2b(1)求证:a0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1x2|的取值范围 24已知曲线(,)在处的切线与直线平行(1)讨论的单调性;(2)若在,上恒成立,求实数的取值范围曲靖市高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】A【解析】解:根据题意,可作出函数图象:不等式f(x)0的解集是(,1)(0,1)故选A2 【答案】D【解析】【分析】对于可构造四棱锥CABD与四面体OABC一样进行判定;对于,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,对于先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定的真假【解答】解:四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可存在无数个点D,使点O在四面体ABCD的外接球面上,故正确故选D3 【答案】A【解析】解: =1+i,其对应的点为(1,1),故选:A4 【答案】D【解析】 考点:函数的零点【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点. 5 【答案】A【解析】解:几何体如图所示,则V=,故选:A【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键6 【答案】 A【解析】解:取a=时,f(x)=x|x|+x,f(x+a)f(x),(x)|x|+1x|x|,(1)x0时,解得x0;(2)0x时,解得0;(3)x时,解得,综上知,a=时,A=(,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,f(x+a)f(x),(x+1)|x+1|+1x|x|,(1)x1时,解得x0,矛盾;(2)1x0,解得x0,矛盾;(3)x0时,解得x1,矛盾;综上,a=1,A=,不合题意,排除C,故选A【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用7 【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:=1与曲线C2:=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1故选:A【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查8 【答案】B【解析】解:A项定义域为2,0,D项值域不是0,2,C项对任一x都有两个y与之对应,都不符故选B【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题9 【答案】A【解析】画出可行域,如图所示,1表示以原点为圆心, 1为半径的圆及其内部,2表示及其内部,由几何概型得点M落在区域2内的概率为,故选A.10【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示故选D【点评】本题考查结构图和流程图的概念,是基础题解题时要认真审题,仔细解答11【答案】D【解析】解:由函数f(x)=sin2(x)=cos2x (0)的周期为=,可得=1,故f(x)=cos2x若将其图象沿x轴向右平移a个单位(a0),可得y=cos2(xa)=cos(2x2a)的图象;再根据所得图象关于原点对称,可得2a=k+,a=+,kZ则实数a的最小值为故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos(x+)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题12【答案】C二、填空题13【答案】150 【解析】解:在RTABC中,CAB=45,BC=100m,所以AC=100m在AMC中,MAC=75,MCA=60,从而AMC=45,由正弦定理得,因此AM=100m在RTMNA中,AM=100m,MAN=60,由得MN=100=150m故答案为:15014【答案】【解析】111考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.15【答案】【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即,因此构造函数,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令也可以求解.116【答案】(1,+) 【解析】解:命题p:xR,x2+2x+a0,当命题p是假命题时,命题p:xR,x2+2x+a0是真命题;即=44a0,a1;实数a的取值范围是(1,+)故答案为:(1,+)【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目17【答案】【解析】考点:一元二次不等式的解法.18【答案】【解析】三、解答题19【答案】 【解析】解:()由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和S圆锥侧=222=4;S圆柱侧=224=16;S圆柱底=22=4几何体的表面积S=20+4;()沿A点与B点所在母线剪开圆柱侧面,如图:则AB=2,以从A点到B点在侧面上的最短路径的长为220【答案】 【解析】解:()由已知条件,直线l的方程为,代入椭圆方程得整理得直线l与椭圆有两个不同的交点P和Q,等价于的判别式=,解得或即k的取值范围为()设P(x1,y1),Q(x2,y2),则,由方程, 又 而所以与共线等价于,将代入上式,解得由()知或,故没有符合题意的常数k【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题21【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;【解答】解:(1)已知圆C:(x1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x1),即2xy2=0(2)当弦AB被点P平分时,lPC,直线l的方程为,即x+2y6=0 22【答案】 【解析】解:(1)若 x0,则x0(1分)当x0时,f(x)=()xf(x)=()xf(x)是定义在R上的奇函数,f(x)=f(x),f(x)=()x=2x(4分)(2)(x)是定义在R上的奇函数,当x=0时,f(x)=0,f(x)=(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(,+)(11分)(用R表示扣1分)无增区间(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档23【答案】【解析】解:(1)f(1)=a+b+c=,3a+2b+2c=0又3a2c2b,故3a0,2b0,从而a0,b0,又2c=3a2b及3a2c2b知3a3a2b2ba0,332,即3(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+ac=ac下面对c的正负情况进行讨论:当c0时,a0,f(0)=c0,f(1)=0所以函数f(x)在区间(0,1)内至少有一个零点;当c0时,a0,f(1)=0,f(2)=ac0所以函数f(x)在区间(1,2)内至少有一个零点;综合得函数f(x)在区间(0,2)内至少有一个零点;(3)x1,x2是函数f(x)的两个零点x1,x2是方程ax2+bx+c=0的两根故x1+x2=,x1x2=从而|x1x2|=3,|x1x2|【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化属于中档题24【答案】(1)在,上单调递增,在,上单调递减;(2).【解析】试题解析:(1)由条件可得,由,可得,由,可得解得或;由,可得解得或所以在,上单调递增,在,上单调递减(2)令,当,时,由,可得在,时恒成立,即,故只需
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 终端押金协议书范本
- 叉车维保安全协议书
- 2026-2031中国硅酸乙酯行业深度研究与行业发展趋势报告
- 2026-2031中国光电子材料行业投资趋势分析研究报告
- 2026-2031中国公安信息化行业深度研究及十五五投资定位分析报告
- 2025年煤矿安全检查试题及答案
- 2025年反假货币测评试题库及答案
- 2025年高处安装、维护、拆除高处作业模拟考试题库及答案
- 2025结核病患者健康教育培训试题及答案
- (2025)国家基本公卫预防接种考试题库及答案
- 2025年广东省继续教育公需课《人工智能赋能制造业高质量发展》满分答案
- 学校管理经验介绍材料
- 学校用电安全教育课件
- 2025考评员考试题及答案
- 2026届浙江杭州市高三一模英语读后续写解析课件(含范文)
- 2025年考研英语二真题及答案解析(完整版)
- 2025-2026新版人教版8八年级数学上册(全册)教案设计
- Unit1HappyHolidaySectionB1a1d教学课件-人教版八年级英语上册
- 细菌性支气管肺炎的护理个案
- 新人教版小学五年级英语上册全册教案
- 电烙铁焊接考试试题(带答案)
评论
0/150
提交评论