




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重 庆 大 学学 生 实 验 报 告实验课程名称 数学实验 开课实验室 DS1421 学 院 年级 专业班 学 生 姓 名 学 号 开 课 时 间 至 学年第 学期总 成 绩教师签名数 学 与 统 计 学 院 制开课学院、实验室:数学与统计学院DS1421 实验时间 : 2013 年 4月24日课程名称数学实验实验项目名 称线性规划实验项目类型验证演示综合设计其他指导教师成 绩实验目的1 学习最优化技术和基本原理,了解最优化问题的分类;2 掌握线性规划的建模技巧和求解方法;3 学习灵敏度分析问题的思维方法;4 熟悉MATLAB软件求解线性规划模型的基本命令;5 通过范例学习,熟悉建立线性规划模型的基本要素和求解方法。 通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和建立优化模型,并且使学生学会使用MATLAB软件进行线性规划模型求解的基本命令,并进行灵敏度分析。解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因此,本实验对学生的学习尤为重要。基础实验一、实验内容1最优化问题的提出,提出不同的假设可以建立不同的最优化模型;2建立线性规划模型的基本要素和步骤;3使用MATLAB命令对线性规划模型进行计算与灵敏度分析;4利用优化数值解与图形解对最优化特征作定性与定量分析;应用实验(或综合实验)一、实验内容2. 两种面包产品的产量配比问题田园食品公司生产的面包很出名。他们生产两种面包:一种是叫“唐师”的白面包,另一种是叫“宋赐”的大黑面包。每个唐师面包的利润是0.05元,宋赐面包是0.08元。两种面包的月生产成本是固定的4000元,不管生产多少面包。该公司的面包生产厂分为两个部:分别是烤制和调配。烤制部有10座大烤炉,每座烤炉的容量是每天出140台,每台可容纳10个唐师面包或5个更大的宋赐面包。可以在一台上同时放两种面包,只需注意宋赐面包所占的空间是唐师面包的两倍。调配部每天可以调配最多8000个唐师面包和5000个宋赐面包。有两个自动调配器分别用于两种面包的调配而不至于发生冲突。田园公司决定找出这两种面包产品的最佳产量配比,即确定两种面包的日产量,使得在公司面包厂的现有生产条件下利润最高。解:可分别设生产 唐师面包宋赐面包,收益为y,根据题给条件列方程决策变量:,; 目标函数:;约束条件:;程序如下所示:C=-0.05,0.08; A=1,0;0,1;1,2; B=8000,5000,14000; L=0,0; x,fmin=linprog(C,A,B,L); Pmax=-fmin-4000/30 x1=x(1), x2=x(2)结果如下所示:Pmax =506.6667,x1 =8000,x2 =3.0000e+003 答:唐师面包需要8000个,宋赐面包需要3000个,可以达到日利润最大为506.6667元。5. 投资策略某部门现有资金10万元,五年内有以下投资项目可供选择:项目A:从第一年到第四年每年初投资,次年末收回本金且获利15%;项目B:第三年初投资,第五年末收回本金且获利25%,最大投资额为4万元;项目C:第二年初投资,第五年末收回本金且获利40%,最大投资额为3万元;项目D:每年初投资,年末收回本金且获利6%;问如何确定投资策略使第五年末本息总额达最大?解: 设对项目A的投资每年分别为,第三年对项目B的投资为,第二年对项目C的投资为每年对项目D的投资分别为 , , ,设,为不同年份;第五年末本息总额为z决策变量:,约束条件:4;3;: +10;: +-0.06+10;:-0.15+-0.06-0.06+10;:-0.15-0.15+-0.06-0.06-0.06+10;:-0.15-0.15-0.15+-0.06-0.06-0.06-0.06+10;0 i=1,2,311目标函数:z=0.15 + 0.15+0.15+0.15+0.25+0.4+0.06+0.06+0.06+0.06+0.06程序:c=-0.15, 0.15, 0.15, 0.15,0.25,0.4,0.06, 0.06, 0.06, 0.06, 0.06;A=0,0,0,0,1,0,0,0,0,0,0;0,0,0,0,0,1,0,0,0,0,0;1,0,0,0,0,0,1,0,0,0,0;1,1,0,0,0,1,-0.06,1,0,0,0;-0.15,1,1,0,1,1,-0.06,-0.06,1,0,0;-0.15,-0.15,1,1,1,1,-0.06,-0.06, -0.06,1,0;-0.15,-0.15,-0.15,1,1,1,-0.06,-0.06,-0.06,-0.06,1;b=4,3,10,10,10,10,10;L=0,0,0,0,0,0,0,0,0,0,0;x,fmin=linprog(c,A,b,L); Pmax=-fmin+10x1=x(1),x2=x(2),x3=x(3),x4=x(4),x5=x(5),x6=x(6),x7=x(7),x8=x(8),x9=x(9),x10=x(10),x11=x(11) 结果: Pmax =14.3750x1 =6.5736,x2 =0.6320,x3 =2.1291,x4 =2.2432,x5 =4.0000,x6 =3.0000,x7 =3.4264,x8 =1.3179e-12,x9 =1.4305,x10 =2.1509e-12,x11 =2.4484如下所示:项目第一年第二年第三年第四年第五年A6.57360.63202.12912.24320B004.000000C03.0000000D3.42641.3179e-121.43052.1509e-122.4484 答:最大化获得本息14.3750万元,对项目A的投资每年分别为6.5736, 0.6320, 2.1291, 2.2432万元,第三年对项目B的投资为 4.0000万元,第二年对项目C的投资为3.0000万元,每年对项目D的投资分别为 3.4264 ,1.3179e-12 , 1.4305,2.1509e-12, 2.4484万元。7工件加工任务分配问题某车间有三台机床甲、乙、丙,可用于加工四种工件。假定这三台机床的可用台时数分别为600、700和800,四种工件的数量分别为200、300、500和400,且已知用四种不同机床加工单位数量的不同工件所需的台时数和加工费用(如表4所示),问怎样分配机床的加工任务,才能既满足加工工件的要求,又使总加工费用最低?表4 机床加工情况表机床类型单位工作所需加工台时数单位工件的加工费用工件1工件2工件3工件4工件1工件2工件3工件4甲0.41.11.01.2139108乙0.51.21.31.4111286丙0.310.91.11511135问题分析:设甲机床上生产的工件1为x11,工件2 为x12机床类型工件1工件2工件3工件4甲x11x12x13x14乙x21x22x23x24丙x31x32x33x34决策变量:x11,x12,x13,x14,x21,x22,x23,x24,x31,x32,x33,x34目标函数:p=13*x11+9*x12+10*x13+8*x14+11*x21+12*x22+8*x23+6*x24+15*x31+11*x32+13*x33+5*x34;约束条件:s.t.0.4*x11+1.1*x12+1.0*x13+1.2*x146000.5*x21+1.2*x22+1.3*x23+1.4*x247000.3*x31+1.0*x32+0.9*x33+1.1*x34800x11+x21+x31200x12+x22+x32+300x13+x23+x33500x14+x24+x34400程序:c=13,9,10,8,11,12,8,6,15,11,13,5;A= 0.4,1.1,1.0,1.2,0,0,0,0,0,0,0,0; 0,0,0,0,0.5,1.2,1.3,1.4,0,0,0,0; 0,0,0,0,0,0,0,0,0.3,1.0,0.9,1.1;-1,0,0,0,-1,0,0,0,-1,0,0,0;0,-1,0,0,0,-1,0,0,0,-1,0,0;0,0,-1,0,0,0,-1,0,0,0,-1,0;0,0,0,-1,0,0,0,-1,0,0,0,-1;b=600;700;800;-200;-300;-500;-400;L=0 0 0 0 0 0 0 0 0 0 0 0 ;x,fmin=linprog(c,A,b,L);fminx11=x(1),x12=x(2),x13=x(3),x14=x(4),x21=x(5),x22=x(6),x23=x(7),x24=x(8),x31=x(9),x32=x(10),x33=x(11),x34=x(12)结果:fmin =1.0977e+004 x11 =7.8137e-008 x12 =300.0000 x13 =38.4615 x14 =1.3692e-006x21 =200.0000 x22=9.5498e-007 x23 =461.5385 x24 =2.1928e-006x31 =1.0912e-006 x32 =2.0724e-006 x33 =1.7586e-006 x34 =400.0000答:甲加工件2 300个,工件3 39个,乙机床加工工件1 200个,工件3 461个,丙机床加工工件4 400个。最低加工费用为10978元。8. 下料问题某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料钢管都是24m,现有一客户需要50根9m、40根7m和15根5m的钢管。应如何下料最节省,应购进多少原料钢管,建立其数学模型,并求解。问题(1)分析与模型建立首先分析1根24m的钢管切割为9m、7m、5m的钢管的模式,所有模式相当于求解不等式方程: 9k1+7k2+5k3=50;2*x(2)+x(4)+x(5)+2*x(6)+3*x(7)=40;x(1)+3*x(3)+x(4)+3*x(5)+2*x(6)+4*x(8)=15;for(model(i):gin(x(i);end解得: x1=15, x2=20, x3, x4, x5, x6, x7, x8=0目标值z=35即15根钢管采用切割模式1:2根9m,1根5m,余料1m。 15根钢管采用切割模
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海创意活动策划布置方案
- 微信群营销管理活动方案
- 移动暖气片的营销方案
- 单位红色故事活动方案策划
- 钢桁梁专项施工方案
- 金融展厅策划咨询方案
- 警务实战技能培训
- 文明卫生专项施工方案
- 建筑方案设计参数怎么写
- 线上购物节营销方案设计
- 合肥市肥东县大学生乡村医生专项计划招聘考试真题2024
- 能源问题面试题库及答案
- 2025山西太原铁路局招聘试题及答案解析
- 2025年海上光伏产业技术创新与海洋能源市场前景报告
- 2025年征兵心理测试题库及答案
- 2025年河南省(安阳市)事业单位招聘联考内黄县(综合类)岗位考察考试参考试题及答案解析
- 2025至2030中国电子束晶圆检查系统行业项目调研及市场前景预测评估报告
- 《老年服务礼仪与沟通技巧》全套教学课件
- 电解质紊乱机制-洞察及研究
- 工程试验检测知识培训课件
- 2025年机动车检验检测机构授权签字人考核试题及答案
评论
0/150
提交评论