已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
禄劝彝族苗族自治县第一中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 下列正方体或四面体中,、分别是所在棱的中点,这四个点不共面的一个图形是( )2 定义在(0,+)上的函数f(x)满足:0,且f(2)=4,则不等式f(x)0的解集为( )A(2,+)B(0,2)C(0,4)D(4,+)3 给出下列两个结论:若命题p:x0R,x02+x0+10,则p:xR,x2+x+10;命题“若m0,则方程x2+xm=0有实数根”的逆否命题为:“若方程x2+xm=0没有实数根,则m0”;则判断正确的是( )A对错B错对C都对D都错4 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=( )A16B16C8D85 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是()A最多可以购买4份一等奖奖品 B最多可以购买16份二等奖奖品C购买奖品至少要花费100元 D共有20种不同的购买奖品方案6 如图,已知正方体ABCDA1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是( )A5B4C4D27 给出下列命题:在区间(0,+)上,函数y=x1,y=,y=(x1)2,y=x3中有三个是增函数;若logm3logn30,则0nm1;若函数f(x)是奇函数,则f(x1)的图象关于点A(1,0)对称;若函数f(x)=3x2x3,则方程f(x)=0有2个实数根其中假命题的个数为( )A1B2C3D48 定义在1,+)上的函数f(x)满足:当2x4时,f(x)=1|x3|;f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c的值是( )A1B2C或3D1或29 已知在平面直角坐标系中,点,().命题:若存在点在圆上,使得,则;命题:函数在区间内没有零点.下列命题为真命题的是( )A B C D10在等比数列an中,已知a1=3,公比q=2,则a2和a8的等比中项为( )A48B48C96D9611已知函数f(x)=x3+mx2+(2m+3)x(mR)存在两个极值点x1,x2,直线l经过点A(x1,x12),B(x2,x22),记圆(x+1)2+y2=上的点到直线l的最短距离为g(m),则g(m)的取值范围是( )A0,2B0,3C0,)D0,)12在等差数列an中,a1=2,a3+a5=8,则a7=( )A3B6C7D8二、填空题13阅读如图所示的程序框图,则输出结果的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.14抛物线的准线与双曲线的两条渐近线所围成的三角形面积为_15抛物线y2=8x上一点P到焦点的距离为10,则P点的横坐标为16【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数若有三个零点,则实数m的取值范围是_17计算sin43cos13cos43sin13的值为18【南通中学2018届高三10月月考】已知函数,若曲线在点处的切线经过圆的圆心,则实数的值为_三、解答题19已知a,b,c分别是ABC内角A,B,C的对边,sin2B=2sinAsinC()若a=b,求cosB;()设B=90,且a=,求ABC的面积20已知函数f(x)=xlnx,求函数f(x)的最小值21已知定义域为R的函数是奇函数(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)022选修45:不等式选讲已知f(x)=|ax+1|(aR),不等式f(x)3的解集为x|2x1()求a的值;()若恒成立,求k的取值范围 23本小题满分10分选修:坐标系与参数方程选讲在直角坐标系中,直线的参数方程为为参数,在极坐标系与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴中,圆的方程为求圆的圆心到直线的距离;设圆与直线交于点,若点的坐标为,求24设f(x)=x2ax+2当x,使得关于x的方程f(x)tf(2a)=0有三个不相等的实数根,求实数t的取值范围 禄劝彝族苗族自治县第一中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】考点:平面的基本公理与推论2 【答案】B【解析】解:定义在(0,+)上的函数f(x)满足:0f(2)=4,则2f(2)=8,f(x)0化简得,当x2时,成立故得x2,定义在(0,+)上不等式f(x)0的解集为(0,2)故选B【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解属于中档题3 【答案】C【解析】解:命题p是一个特称命题,它的否定是全称命题,p是全称命题,所以正确根据逆否命题的定义可知正确故选C【点评】考查特称命题,全称命题,和逆否命题的概念4 【答案】B【解析】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,f(2)g(2)=(2)32(2)2=16即f(2)+g(2)=f(2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力5 【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16)在可行域内的整数点有:(2,6),(2,7),(2,16),(3,9),(3,10),(3,14),(4,12),共11+6+1=18个。其中,x最大为4,y最大为16最少要购买2份一等奖奖品,6份二等奖奖品,所以最少要花费100元。所以A、B、C正确,D错误。故答案为:D6 【答案】 D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0a4,0b4,P(x,y,4),0x4,0y4,则F(0,b,4),E(4,a,0),=(x,by,0),点P到点F的距离等于点P到平面ABB1A1的距离,当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),|PE|min=2故选:D【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识7 【答案】 A【解析】解:在区间(0,+)上,函数y=x1,是减函数函数y=为增函数函数y=(x1)2在(0,1)上减,在(1,+)上增函数y=x3是增函数有两个是增函数,命题是假命题;若logm3logn30,则,即lgnlgm0,则0nm1,命题为真命题;若函数f(x)是奇函数,则其图象关于点(0,0)对称,f(x1)的图象关于点A(1,0)对称,命题是真命题;若函数f(x)=3x2x3,则方程f(x)=0即为3x2x3=0,也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题为真命题假命题的个数是1个故选:A【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题8 【答案】D【解析】解:当2x4时,f(x)=1|x3|当1x2时,22x4,则f(x)=f(2x)=(1|2x3|),此时当x=时,函数取极大值;当2x4时,f(x)=1|x3|;此时当x=3时,函数取极大值1;当4x8时,24,则f(x)=cf()=c(1|3|),此时当x=6时,函数取极大值c函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,=,解得c=1或2故选D【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键9 【答案】A【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以,解得,因此,命题是真命题.命题:函数,,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是假命题.因此只有为真命题故选A考点:复合命题的真假【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.10【答案】B【解析】解:在等比数列an中,a1=3,公比q=2,a2=32=6,=384,a2和a8的等比中项为=48故选:B11【答案】C【解析】解:函数f(x)=x3+mx2+(2m+3)x的导数为f(x)=x2+2mx+2m+3,由题意可得,判别式0,即有4m24(2m+3)0,解得m3或m1,又x1+x2=2m,x1x2=2m+3,直线l经过点A(x1,x12),B(x2,x22),即有斜率k=x1+x2=2m,则有直线AB:yx12=2m(xx1),即为2mx+y2mx1x12=0,圆(x+1)2+y2=的圆心为(1,0),半径r为则g(m)=dr=,由于f(x1)=x12+2mx1+2m+3=0,则g(m)=,又m3或m1,即有m21则g(m)=,则有0g(m)故选C【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题12【答案】B【解析】解:在等差数列an中a1=2,a3+a5=8,2a4=a3+a5=8,解得a4=4,公差d=,a7=a1+6d=2+4=6故选:B二、填空题13【答案】【解析】根据程序框图可知,其功能是求数列的前1008项的和,即.14【答案】【解析】【知识点】抛物线双曲线【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:15【答案】8 【解析】解:抛物线y2=8x=2px,p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=x+=x+2=10,x=8,故答案为:8【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解16【答案】【解析】17【答案】 【解析】解:sin43cos13cos43sin13=sin(4313)=sin30=,故答案为18【答案】【解析】结合函数的解析式可得:,对函数求导可得:,故切线的斜率为,则切线方程为:,即,圆:的圆心为,则:.三、解答题19【答案】 【解析】解:(I)sin2B=2sinAsinC,由正弦定理可得:0,代入可得(bk)2=2akck,b2=2ac,a=b,a=2c,由余弦定理可得:cosB=(II)由(I)可得:b2=2ac,B=90,且a=,a2+c2=b2=2ac,解得a=c=SABC=120【答案】 【解析】解:函数的定义域为(0,+)求导函数,可得f(x)=1+lnx令f(x)=1+lnx=0,可得0x时,f(x)0,x时,f(x)0时,函数取得极小值,也是函数的最小值f(x)min=【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题21【答案】 【解析】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1;从而有;经检验,符合题意;(2)由(1)知,f(x)=+;由y=2x的单调性可推知f(x)在R上为减函数; (3)因为f(x)在R上为减函数且是奇函数,从而不等式f(1+|x|)+f(x)0等价于f(1+|x|)f(x),即f(1+|x|)f(x); 又因f(x)是R上的减函数,由上式推得1+|x|x,解得xR22【答案】 【解析】解:()由|ax+1|3得4ax2不等式f(x)3的解集为x|2x1当a0时,不合题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025西藏公务员申论援藏政策专项卷
- 【核心考点】2025秋五年级数学上学期核心考点精炼卷
- 2026-2031年中国储氢球罐市场调研分析及投资战略研究报告
- 安全生产严禁标志讲解
- 2025兴业银行香港分行金融市场条线招聘备考题库附答案详解(模拟题)
- 2026华夏银行秋季校园招聘备考题库含答案详解(达标题)
- 2025浙江嘉兴市海宁市袁花镇聘专职网格员招聘3人备考题库含答案详解(研优卷)
- 2026中国建设银行远程智能银行中心校园招聘10人备考题库(含答案详解)
- 2026中国农业银行新疆兵团分行校园招聘246人备考题库(含答案详解)
- 2025广东韶关始兴县罗坝镇招聘桃源村党群服务中心专职人员1人备考题库附答案详解(能力提升)
- 心源性休克处置
- 2025年01月湖南工商大学湘江实验室公开招聘笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年中国中信金融资产管理股份有限公司北京市分公司招聘笔试参考题库附带答案详解
- 【MOOC】科学计算与数学建模-中南大学 中国大学慕课MOOC答案
- 医疗器械行业无菌车间设计与实施方案
- DB14-T2551-2022公路隧道缺陷与病害处治及验收技术规范
- 2024年资格考试-对外汉语教师资格证考试近5年真题附答案
- 血液透析中低血压的预防及处理
- 专升本计算机教学课件-第一章-计算机基础知识(2023新版大纲)
- 《山区公路桥梁典型病害手册(试行)》
- NB-T31014-2018双馈风力发电机变流器技术规范
评论
0/150
提交评论