




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
不等式【2019年高考考纲解读】高考对本内容的考查主要有:(1)一元二次不等式是C级要求,线性规划是A级要求(2)基本不等式是C级要求,理解基本不等式在不等式证明、函数最值的求解方面的重要应用试题类型可能是填空题,同时在解答题中经常与函数、实际应用题综合考查,构成中高档题.【重点、难点剖析】 1不等式的解法(1)求解一元二次不等式的基本思路:先化为一般形式ax2bxc0(a0),再求相应一元二次方程ax2bxc0(a0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集(2)解含参数不等式的难点在于对参数的恰当分类,关键是找到对参数进行讨论的原因确定好分类标准、层次清楚地求解 2基本不等式(1)基本不等式a2b22ab取等号的条件是当且仅当ab.(2)几个重要的不等式:ab2(a,bR) (a0,b0)a2(a0,当a1时等号成立)2(a2b2)(ab)2(a,bR,当ab时等号成立)(3)最值问题:设x,y都为正数,则有若xys(和为定值),则xy时,积xy取得最大值;若xyp(积为定值),则当xy时,和xy取得最小值2.3不等式的恒成立、能成立、恰成立问题(1)恒成立问题若不等式f(x)A在区间D上恒成立,则等价于在区间D上f(x)minA;若不等式f(x)B在区间D上恒成立,则等价于在区间D上f(x)maxA成立,则等价于在区间D上f(x)maxA;若在区间D上存在实数x使不等式f(x)B成立,则等价于在区间D上f(x)minA在区间D上恰成立,则等价于不等式f(x)A的解集为D;若不等式f(x)B在区间D上恰成立,则等价于不等式f(x)B的解集为D.4使用基本不等式以及与之相关的不等式求一元函数或者二元函数最值时,基本的技巧是创造使用这些不等式的条件,如各变数都是正数,某些变数之积或者之和为常数等,解题中要根据这个原则对求解目标进行适当的变换,使之达到能够使用这些不等式求解最值的目的在使用基本不等式求函数的最值、特别是求二元函数最值时一定要注意等号成立的条件,尽量避免二次使用基本不等式5平面区域的确定方法是“直线定界、特殊点定域”,二元一次不等式组所表示的平面区域是各个不等式所表示的半平面的交集线性目标函数zaxby中的z不是直线axbyz在y轴上的截距,把目标函数化为yx,可知是直线axbyz在y轴上的截距,要根据b的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.【题型示例】题型一、不等式的解法及应用【例1】(2018年全国I卷理数)已知集合,则A. B. C. D. 【答案】B【解析】解不等式得,所以,所以可以求得,故选B.【变式探究】【2017浙江,4】若,满足约束条件,则的取值范围是A0,6B0,4C6,D4,【答案】D【解析】如图,可行域为一开放区域,所以直线过点时取最小值4,无最大值,选D【变式探究】【2016高考新课标1卷】若,则( )(A) (B) (C) (D)【答案】C【解析】用特殊值法,令,得,选项A错误,选项B错误,选项C正确,选项D错误,故选C 【感悟提升】(1)对于和函数有关的不等式,可先利用函数的单调性进行转化;(2)求解一元二次不等式的步骤:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集;(3)含参数的不等式的求解,要对参数进行分类讨论【举一反三】(2015江苏,7)不等式2x2x4的解集为_【解析】2x2x422,x2x2,即x2x20,解得1x2.【答案】x|1x2【变式探究】若a,b,c为实数,且ab0,则下列结论正确的是()Aac2bc2 B Da2abb2【解析】c为实数,取c0,得ac20,bc20,此时ac2bc2,故选项A不正确;,ab0,ab0,0,即,故选项B不正确;ab0,取a2,b1,则,2,此时,故选项C不正确;ab0,a2ab,又abb2b(ab)0,abb2,故选项D正确,故选D【答案】D【方法技巧】解不等式的四种策略(1)解一元二次不等式的策略:先化为一般形式ax2bxc0(a0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集(2)解简单的分式不等式的策略:将不等式一边化为0,再将不等式等价转化为整式不等式(组)求解(3)解含指数、对数不等式的策略:利用指数、对数函数的单调性将其转化为整式不等式求解(4)解含参数不等式的策略:根据题意确定参数分类的标准,依次讨论求解【变式探究】 (1)若不等式x2ax10对于一切x成立,则a的取值范围是_(2)已知一元二次不等式f(x)0的解集为_【答案】(1),)(2)x|xlg 2【规律方法】解一元二次不等式一般要先判断二次项系数的正负也即考虑对应的二次函数图象的开口方向,再考虑方程根的个数也即求出其判别式的符号,有时还需要考虑其对称轴的位置,根据条件列出方程组或结合对应的函数图象求解题型二、线性规划问题【例2】(2018年全国I卷理数)若,满足约束条件,则的最大值为_【答案】6【解析】根据题中所给的约束条件,画出其对应的可行域,如图所示:由可得,画出直线,将其上下移动,结合的几何意义,可知当直线过点B时,z取得最大值,由,解得,此时,故答案为6.【举一反三】(2018年全国卷理数)若满足约束条件则的最大值为_【答案】9【解析】作可行域,则直线过点A(5,4)时取最大值9.【变式探究】(2018天津卷)设变量x,y满足约束条件则目标函数z3x5y的最大值为()A6 B19 C21 D45【解析】由变量x,y满足的约束条件画出可行域(如图中阴影部分所示)作出初始直线l0:3x5y0,平移直线l0,当直线经过点A(2,3)时,z取最大值,即zmax325321,故选C【答案】C【变式探究】【2017北京,理4】若x,y满足 则x + 2y的最大值为(A)1 (B)3(C)5 (D)9【答案】D【解析】如图,画出可行域,表示斜率为的一组平行线,当过点时,目标函数取得最大值,故选D.【变式探究】【2016年高考北京理数】若,满足,则的最大值为( )A.0 B.3 C.4 D.5【答案】C【解析】作出如图可行域,则当经过点时,取最大值,而,所求最大值为4,故选C. 【感悟提升】(1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围(2)一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得【举一反三】已知实数x,y满足约束条件若z2xy的最小值为3,则实数b()A B C1 D【解析】作出不等式组对应的平面区域,如图中阴影部分所示由z2xy得y2xz,平移初始直线y2x,由图可知当直线y2xz经过点A时,直线y2xz的纵截距最小,此时z最小,为3,即2xy3.由解得即A,又点A也在直线yxb上,即b,b.故选A【答案】A 【变式探究】(1)设x,y满足约束条件则z2xy的最大值为()A10B8C3D2(2)(2014浙江)当实数x,y满足时,1axy4恒成立,则实数a的取值范围是_【命题意图】(1)本题主要考查线性规划问题的求解,意在考查考生的数形结合能力与运算求解能力(2)本题主要考查线性规则、不等式恒成立问题,考查考生的数形结合与运算求解能力【答案】(1)B(2)【解析】(1)作出可行域如图中阴影部分所示,由z2x y得y2xz,作出直线y2x,平移使之经过可行域,观察可知,当直线经过点B(5,2)时,对应的z值最大故zmax2528.(2)作出题中线性规划条件满足的可行域如图中阴影部分所示,令zaxy,即yaxz.作直线l0:yax,平移l0,最优解可在A(1,0),B(2,1),C处取得故由1z4恒成立,可得解得1a.【感悟提升】1线性规划问题的三种题型(1)求最值,常见形如截距式zaxby,斜率式z,距离式z(xa)2(yb)2.(2)求区域面积(3)由最优解或可行域确定参数的值或取值范围2解答线性规划问题的步骤及应注意的问题(1)解决线性规划问题首先要找到可行域,再注意目标函数所表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决(2)画可行域时应注意区域是否包含边界 (3)对目标函数zAxBy中的B的符号,一定要注意B的正负与z的最值的对应,要结合图形分析题型三、基本不等式及其应用例3、【2017山东,理7】若,且,则下列不等式成立的是(A) (B)(C) (D)【答案】B【解析】因为,且,所以 ,所以选B.【变式探究】【2016高考天津理数】设变量x,y满足约束条件则目标函数的最小值为( )(A)(B)6(C)10(D)17【答案】B【解析】可行域为一个三角形ABC及其内部,其中,直线过点B时取最小值6,选B.【感悟提升】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误【举一反三】(1)已知不等式0的解集为x|ax0,则的最小值为()A4 B8C9 D12(2)要制作一个容积为4 m3,高为1 m的无盖长方体容器已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_(单位:元)【命题意图】(1)本题主要考查解分式不等式、均值不等式等基础知识,对学生的转化思想、运算能力有一定要求(2)本题主要考查空间几何体的表面积、基本不等式等基础知识,意在考查考生处理实际问题的能力、空间想象能力和运算求解能力【答案】(1)C(2)160【解析】(1)易知不等式0的解集为(2,1),所以a2,b1,则2mn1,(2mn)5549当且仅当mn时取等号,所以的最小值为9.设该容器的总造价为y元,长方体的底面矩形的长为x m,因为无盖长方体的容积为4 m3,高为1 m,所以长方体的底面矩形的宽为m,依题意,得y20410802080202160,所以该容器的最低总造价为160元【感悟提升】(1)一般地,分子、分母有一个一次、一个二次的分式结构的函数以及含有两个变量的函数,特别适合用基本不等式求最值(2)在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件(3)若两次连用基本不等式,要注意等号的取得条件的一致性,否则就会出错【举一反三】下列结论中正确的是()Algx的最小值为2B的最小值为2C的最小值为4D当00,b0)在该约束条件下取到最小值2时,a2b2的最小值为()A5 B4 C. D2法二把2ab2看作平面直角坐标系aOb中的直线,则a2b2的几何意义是直线上的点与坐标原点距离的平方,显然a2b2的最小值是坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全教育知识培训方案课件
- 农业无人机租赁平台运营模式创新与竞争力提升研究
- 农业废弃物资源化利用项目技术改造路径研究报告
- 理财行业面试题库及答案
- 农业产业强镇资金申请报告:2025年政策导向与产业协同发展
- 农业产业园项目2025年市场机会分析与效益评估报告
- 婴幼儿配方食品营养配方优化与婴幼儿听力保护研究报告
- 太阳能光伏发电技术前瞻研究报告
- 安全教育培训记录与监理课件
- 新能源行业2025年危机公关法律法规解读
- 《大学生当铺策划书》课件
- 环境学概论课课件
- 药包材生产质量管理手册
- 装饰工程保修单
- IInterlib区域图书馆集群管理系统-用户手册
- EnglishDrama英语戏剧写作及表演技巧课件
- DB11T 827-2019 废旧爆炸物品销毁处置安全管理规程
- 社会组织管理概论全套ppt课件(完整版)
- 轧机设备安装施工方案
- (完整版)IATF16949新版过程乌龟图的编制与详解课件
- 制药企业仓库温湿度分布的验证
评论
0/150
提交评论