已阅读5页,还剩87页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,课时1 直线与圆锥曲线,9.8 圆锥曲线的综合问题,内容索引,题型一 直线与圆锥曲线的位置关系,题型二 弦长问题,题型三 中点弦问题,练出高分,思想方法 感悟提高,题型一 直线与圆锥曲线的位置关系,解析答案,题型一 直线与圆锥曲线的位置关系,所以直线l与双曲线c有两个交点, 由一元二次方程根与系数的关系得两个交点横坐标符号不同, 故两个交点分别在左、右支上. 答案 ,解析 关于t的方程t2cos tsin 0的两个不等实根为0,tan (tan 0), 则过a,b两点的直线方程为yxtan ,,所以直线yxtan 与双曲线没有公共点.,0,解析答案,解析答案,设直线l同时与椭圆c1和抛物线c2:y24x相切,求直线l的方程.,解析答案,思维升华,由题意可知此方程有唯一解,,解析答案,思维升华,解析答案,思维升华,思维升华,思维升华,研究直线和圆锥曲线的位置关系,一般转化为研究直线方程与圆锥曲线方程组成的方程组解的个数.对于填空题,常充分利用几何条件,利用数形结合的方法求解.,跟踪训练1,解析答案,方程根的判别式(8m)249(2m24)8m2144.,解 将直线l的方程与椭圆c的方程联立,,将代入,整理得9x28mx2m240. ,(2)有且只有一个公共点;,解析答案,(3)没有公共点.,解析答案,返回,题型二 弦长问题,解析答案,题型二 弦长问题,解析答案,思维升华,设点m,n的坐标分别为(x1,y1),(x2,y2), 则y1k(x11),y2k(x21),,解析答案,思维升华,思维升华,思维升华,有关圆锥曲线弦长问题的求解方法: 涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.,跟踪训练2,解析答案,联立,得a29,b28.,(2)若acbd,求直线l的斜率.,解析答案,返回,解 如图,设a(x1,y1),b(x2,y2),c(x3,y3),d(x4,y4).,从而x3x1x4x2,即x1x2x3x4,,于是(x1x2)24x1x2(x3x4)24x3x4. 设直线l的斜率为k,则l的方程为ykx1.,解析答案,而x1,x2是这个方程的两根, 所以x1x24k,x1x24. ,而x3,x4是这个方程的两根,,解析答案,返回,题型三 中点弦问题,解析答案,题型三 中点弦问题,解析答案,即a22b2,又a2b2c2,,解析答案,思维升华,解析 设m(x1,y1),n(x2,y2),mn的中点p(x0,y0),,解析答案,思维升华,m,n关于直线yxm对称,kmn1, y03x0.,解得m0或8,经检验都符合.,答案 0或8,思维升华,思维升华,设抛物线过定点a(1,0),且以直线x1为准线. (1)求抛物线顶点的轨迹c的方程; 解 设抛物线顶点为p(x,y),则焦点f(2x1,y). 再根据抛物线的定义得af2,即(2x)2y24,,跟踪训练3,解析答案,解析答案,返回,两式相减,得4(xmxn)(xmxn)(ymyn)(ymyn)0,,解析答案,解析答案,返回,思想方法 感悟提高,1.有关弦的三个问题 涉及弦长的问题,应熟练地利用根与系数的关系,设而不求计算弦长;涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解. 2.求解与弦有关问题的两种方法 (1)方程组法:联立直线方程和圆锥曲线方程,消元(x或y)成为二次方程之后,结合根与系数的关系,建立等式关系或不等式关系.,方法与技巧,(2)点差法:在求解圆锥曲线且题目中已有直线与圆锥曲线相交和被截线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式是否为正数.,判断直线与圆锥曲线位置关系时的注意点 (1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点. (2)直线与抛物线交于一点时,除直线与抛物线相切外,易忽视直线与对称轴平行时也相交于一点.,失误与防范,返回,练出高分,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,2,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,所以它与双曲线只有1个交点.,1,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析 设a,b两点的坐标分别为(x1,y1),(x2,y2), 直线l的方程为yxt,,得5x28tx4(t21)0,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,5.过抛物线y24x的焦点作一条直线与抛物线相交于a,b两点,它们到直线x2的距离之和等于5,则这样的直线有_条.,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析 抛物线y24x的焦点坐标为(1,0),准线方程为x1, 设a,b的坐标分别为(x1,y1),(x2,y2), 则a,b到直线x1的距离之和为x1x22. 设直线方程为xmy1,代入抛物线y24x, 则y24(my1),即y24my40, x1x2m(y1y2)24m22.,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,x1x224m244. a,b到直线x2的距离之和x1x22265. 满足题意的直线不存在. 答案 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,4. 答案 4,解析 使得ab的直线l恰有3条. 根据对称性,其中有一条直线与实轴垂直.,双曲线的两个顶点之间的距离是2,小于4, 过双曲线的焦点一定有两条直线使得交点之间的距离等于4, 综上可知,ab4时,有3条直线满足题意.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,7.在抛物线yx2上关于直线yx3对称的两点m,n的坐标分别为_.,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析 设直线mn的方程为yxb, 代入yx2中, 整理得x2xb0,令14b0,,设m(x1,y1),n(x2,y2),则x1x21,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,答案 (2,4),(1,1),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析 设直线与椭圆交于a(x1,y1)、b(x2,y2)两点, 由于a、b两点均在椭圆上,,解析答案,又p是a、b的中点,x1x26,y1y22,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,即3x4y130. 答案 3x4y130,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,pf2,解析答案,因为pf2f2q,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,(2)试判断直线pq与椭圆c的公共点个数,并证明你的结论.,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,(b2c2)x22a2cxa4a2b20, 而a2b2c2,上式可化为a2x22a2cxa2c20, 解得xc, 直线pq与椭圆c只有一个公共点.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,10.(2014湖北)在平面直角坐标系xoy中,点m到点f(1,0)的距离比它到y轴的距离多1.记点m的轨迹为c. (1)求轨迹c的方程; 解 设点m(x,y),依题意得mf|x|1,,化简整理得y22(|x|x).,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,(2)设斜率为k的直线l过定点p(2,1),求直线l与轨迹c恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解 在点m的轨迹c中,记c1:y24x (x0),c2:y0(x0). 依题意,可设直线l的方程为y1k(x2).,可得ky24y4(2k1)0.(*1),解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,当k0时,此时y1.,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,由抛物线的性质可知pf628.,8,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,经过点p的直线y2xm (m0)与双曲线c有且只有一个交点,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,则点b在x轴的上方,过点b作该抛物线的准线的垂线,垂足为b1,,由此得p2,抛物线方程是y24x,,解析答案,焦点f(1,0),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,14.已知抛物线e:y22px(p0)经过圆f:x2y22x4y40的圆心,则抛物线e的准线与圆f相交所得的弦长为_.,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析 圆的标准方程为(x1)2(y2)232,圆心为f(1,2). 代入抛物线方程可得p2, 所以其准线方程为x1. 圆心到直线x1的距离d2,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,(2)若直线l:ykxm与椭圆c相交于a,b两点(a,b不是左,右顶点),且以ab为直径的圆过椭圆c的右顶点.求证:直线l过定点,并求出该定点的坐标.,解析答案,返回,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解 设a(x1,y1),b(x2,y2),,得(34k2)x28mkx4(m23)0, 64m2k216(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026上海春季高考物理考试总复习:曲线运动、平抛运动(知识梳理+考点讲义)原卷版
- Unit 3 Curious minds(单元测试·基础卷)解析版
- 2026届高考数学总复习:立体几何中的翻折、探索性和最值、范围问题
- 医学帕金森病多巴治疗案例分析课件
- 2026外研版高考英语复习讲义 必修第三册 Unit 4 Amazing art
- TXJBX0113-2025水利工程投标全过程合规管理技术规范
- 2026高考物理复习高频考点强化训练:功能关系的综合应用(原卷版)
- 共病疼痛对麻醉药品依赖性评价的影响及对策
- 2026年中国多晶硅产业发展展望及投资策略报告
- 《JBT 6185.9-1992 16mm 槽系组合夹具支承件 三竖槽长方形垫板》(2026年)实施指南
- 会员充值消费管理明细表
- 国家肥料执行标准大全
- (7)-第七章性与生殖健康
- 江苏省重大建设项目档案验收办法
- “戏”说故宫智慧树知到答案章节测试2023年中央戏剧学院
- 建筑施工安全员学习资料
- 励盈港式茶餐厅员工手册
- LY/T 3292-2021自然保护地生态旅游规范
- GB/T 14608-1993小麦粉湿面筋测定法
- DB32/T 4400-2022《饮用水次氯酸钠消毒技术规程》-(高清正版)
- DG-TJ 08-2335-2020 郊野公园设计标准 高质量清晰版
评论
0/150
提交评论