已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级数学(上册)第一章 证明(二),3.线段的垂直平分线(2) 三角形的垂心,驶向胜利的彼岸,线段的垂直平分线的作法,已知:线段AB,如图. 求作:线段AB的垂直平分线. 作法:,用尺规作线段的垂直平分线.,1.分别以点A和B为圆心,以大于AB/2长为半径作弧,两弧交于点C和D.,2. 作直线CD.,则直线CD就是线段AB的垂直平分线.,请你说明CD为什么是AB的垂直平分线,并与同伴进行交流.,老师提示: 因为直线CD与线段AB的交点就是AB的中点,所以我们也用这种方法作线段的中点.,驶向胜利的彼岸,线段的垂直平分线的性质,定理 线段垂直平分线上的点到这条线段两个端点距离相等.,老师提示:这个结论是经常用来证明两条线段相等的根据之一.,如图, AC=BC,MNAB,P是MN上任意一点(已知), PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等).,驶向胜利的彼岸,线段的垂直平分线的性质定理的逆定理,逆定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.,如图, PA=PB(已知), 点P在AB的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).,老师提示:这个结论是经常用来证明点在直线上(或直线经过某一点)的根据之一. 从这个结果出发,你还能联想到什么?,驶向胜利的彼岸,亲历知识的发生和发展,剪一个三角形纸片通过折叠找出每条边的垂直平分线.,结论:三角形三条边的垂直平分线相交于一点.,老师期望: 你能写出规范的证明过程.,你想证明这个命题吗?你能证明这个命题吗?,观察这三条垂直平分线,你发现了什么?,驶向胜利的彼岸,亲历知识的发生和发展,利用尺规作出三角形三条边的垂直平分线.,结论:三角形三条边的垂直平分线相交于一点.,老师期望: 你能写出规范的证明过程.,你想证明这个命题吗?你能证明这个命题吗?,再观察这三条垂直平分线,你又发现了什么?与同伴交流.,驶向胜利的彼岸,命题:三角形三条边的垂直平分线相交于一点.,如图,在ABC中,设AB,BC的垂直平分线相交于点P,连接AP,BP,CP.,点P在线段AB的垂直平分线上, PA=PB (或AB的中点,). 同理,PB=PC. PA=PC. 点P在线段AB的垂直平分线上, AB,BC,AC的垂直平分线相交于一点.,想一想:若作出P的角平分线,结论是否也可以得征?,咋证三条直线交于一点,基本想法是这样的:我们知道,两条直线相交只有一个交点.要想证明三条直线相交于一点,只要能证明两条直线的交点在第三条直线上即可.这时可以考虑前面刚刚学到的逆定理.,驶向胜利的彼岸,定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.,如图,在ABC中, c,a,b分别是AB,BC,AC的垂直平分线(已知), c,a,b相交于一点P,且PA=PB=PC(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).,老师提示: 这是一个证明三条直线交于一点的证明根据.,几何的三种语言,挑战自我,驶向胜利的彼岸,已知三角形的一条边及这条边上的高,你能作出三角形吗?,老师期望: 你能亲自探索出结果并能用尺规作出图形.,如果能,能作出几个?所作出的三角形都全等吗?,已知等腰三角形的底及底边上的高,你能用尺规作出等腰三角形吗?能作几个?,梦想成真,1.已知底边及底边上的高,利用尺规作等腰三角形.,已知:线段a,h(如图).,求作: ABC,使AB=AC,且BC=a,高AD=h,老师期望: 你能亲自写出作法.,作法:,驶向胜利的彼岸,回味无穷,定理 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等. 如图,在ABC中, c,a,b分别是AB,BC,AC的垂直平分线(已知), c,a,b相交于一点P,且PA=PB=PC(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).,驶向胜利的彼岸,知识的升华,P9习题1.7 1,2题. 祝你成功!,驶向胜利的彼岸,习题1.7,驶向胜利的彼岸,1.已知线段a,求作以a为底,以a/2为高的等腰三角形.这个等腰三角形有什么特征?,老师提示: 先分析,作出示意图形,再按要求去作图.,这个等腰三角形有什么特征?,习题1.7,驶向胜利的彼岸,2.为筹办一个大型运动会,某市政府打算修建一个大型体育中心.在选址过程中,有人建议该体育中心所在位置应当与该城市的三个城镇中心(如图中P,Q,R表示)的距离相等.,老师期望: 养成用数学解释生活的习惯.,(1).根据上述建议,试在图(1)中画出体育中心G的位置;,(2).如果这三个城镇的位置如图(2)所示,RPQ是一个钝角,那么根据上述建议,体育
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国银行股份有限公司2026年全球校园招聘备考题库(海南招聘72人)及答案详解(历年真题)
- 中国银联2026年度校园招聘备考题库含答案详解(基础题)
- 2026杭州银行衢州分行秋季校园招聘备考题库及答案详解(历年真题)
- 2026年中国建设银行博士后科研工作站博士后研究人员招聘备考题库及参考答案详解1套
- 2025江苏南通市通州区消防救援大队招聘火灾调查辅助文员1人备考题库及答案详解(新)
- 高空作业人员安全保障措施
- 个性化诊疗方案的干预路径设计
- 个性化治疗方案的数据挖掘算法
- 2025广东江门开平农商银行校园招聘备考题库含答案详解(模拟题)
- 2025云南省红河州弥勒市元亨社会工作服务中心招聘社工备考题库有答案详解
- 汽车新技术-发动机新技术
- 管道开挖回填基础工程量参考计算表
- 金属加工企业机加工安全风险分级管控清单
- 白杨礼赞 全国优质课一等奖
- 我国农村宗教信仰状况的调研报告
- 江苏教师资格认定体检标准及操作规程
- 学校食堂满意度课件
- 手指末节肌腱止点重建课件
- 部编人教版九年级下册语文:古诗文默写 复习课件
- 情况说明的正确格式范文三篇
- 某公司OTN传输项目施工交付方案
评论
0/150
提交评论