




已阅读5页,还剩39页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
tree adjoining grammars,cis 530 intro to nlp,cis 530 - intro to nlp,2,context free grammars,s,np,s,v,does,s,np,v,think,vp,s,np,who,harry,bill,who does bill think harry likes?,context free grammars: derivations,cis 530 - intro to nlp,3,context free grammars,s,np,s,v,does,s,np,v,think,vp,s,np,who,harry,bill,who does bill think harry likes?,context free grammars: semantics,meaning relations of the predicate/argument structures is lost in the tree likes (harry, who),cis 530 - intro to nlp,4,context free grammars,cfgs can be parsed in time proportional to n3, where n is the length of the input in words by algorithms like cky.,context free grammars: complexity,cis 530 - intro to nlp,5,transformational grammars,s,np,s,v,does,s,np,v,think,vp,s,np,v,np,likes,vp,harry,bill,who does bill think harry likes?,context free deep structure plus movement transformations,cis 530 - intro to nlp,6,tgs can be parsed in exponential time 2n, where n is the length of the input in words exponential time is intractable, because exponentials grow so quickly,transformational grammars: complexity,cis 530 - intro to nlp,7,lexicalized ltag,finite set of elementary trees anchored on lexical items - encapsulates syntactic and semantic dependencies elementary trees: initial and auxiliary,cis 530 - intro to nlp,8,ltag: a set of elementary trees,cis 530 - intro to nlp,9,a1:,s,np,v,np,likes,a2:,s,np,v,np,likes,np,e,s,transitive,object extraction,some other trees for likes: subject extraction, topicalization, subject relative, object relative, passive, etc.,vp,vp,ltag: examples,cis 530 - intro to nlp,10,lexicalized ltag,finite set of elementary trees anchored on lexical items - encapsulates syntactic and semantic dependencies elementary trees: initial and auxiliary operations: substitution and adjoining,cis 530 - intro to nlp,11,a:,x,b:,x,g:,x,b,substitution,cis 530 - intro to nlp,12,a:,x,b:,x*,x,g:,x,x,b,tree b adjoined to tree a at the node labeled x in the tree a,adjoining,cis 530 - intro to nlp,13,ltag: a derivation,cis 530 - intro to nlp,14,ltag: a derivation,cis 530 - intro to nlp,15,ltag: a derivation,cis 530 - intro to nlp,16,ltag: a derivation,np,s,a2:,cis 530 - intro to nlp,17,ltag: a derivation,np,s,a2:,cis 530 - intro to nlp,18,ltag: a derivation,np,s,a2:,np,s,a2:,s,cis 530 - intro to nlp,19,ltag: a derivation,np,s,a2:,s,np,v,np,likes,e,vp,b1:,s,cis 530 - intro to nlp,20,ltag: a derivation,np,s,a2:,cis 530 - intro to nlp,21,ltag: semantics,s,np,s,v,does,s,np,v,think,vp,s,np,v,np,likes,e,vp,who,harry,bill,who does bill think harry likes,meaning relations of the predicate/argument structures are clear in the original base trees!,cis 530 - intro to nlp,22,s,np,v,np,likes,np,e,s,vp,s,np,v,s*,b1:,think,vp,b2:,v,s,does,s*,np,np,np,who,harry,bill,a3:,a2:,a4:,a5:,substitution,adjoining,who does bill think harry likes,ltag: a derivation,cis 530 - intro to nlp,23,who does bill think harry likes,a2:,likes,a3:,who,b1:,think,a4:,harry,b2:,does,a5:,bill,* compositional semantics on this derivation structure * related to dependency diagrams,substitution,adjoining,ltag: derivation tree,tags: complexity,tags can be parsed in polynomial time n5 rather than n3 for cfgs tags are a prime example of mildly context sensitive grammars (mcsgs) plausible: mcsgs are sufficient to capture the grammars of all human languages e.g. can parse swiss german,cis 530 - intro to nlp,24,cis 530 - intro to nlp,25,context free grammars structure doesnt well represent “domains of locality” reflecting meaning parsed in polynomial time n3 (n is the length of the input) transformational grammars captures domains of locality, accounting for surface word order by “movement” parsing is intractable, requring 2n time tree adjoining grammars captures domains of locality, with surface discontiguities the result of adjunction parsed in polynomial time n5 (rather than n3 for cfgs),adequacy vs. complexity,tags & mildly context sensitive languages: swiss german,cis 530 - intro to nlp,26,cis 530 - intro to nlp,27,english relative clauses are nested,np1 the mouse vp1 ate the cheese form: np1 vp1 np1 the mouse np2 the cat vp2 chased vp1 ate the cheese form: np1 np2 vp2 vp1 theorem: languages of form wwr are context free,cis 530 - intro to nlp,28,cfg trees naturally nest structure,v,np,ate,the cheese,vp1,s,np,vp2,s,cis 530 - intro to nlp,29,swiss german sentences are harder.,in english: np1 claudia vp1 watched np2 eva vp2 make np3 ulrich vp2 work form: np1 vp1 np2 vp2 np3 vp3 not hard in swiss german: np1 claudia np2 eva np3 ulrich vp1 watched vp2 make vp3 work form: np1 np2 np3 vp1 vp2 vp3 theorem: languages of form ww cannot be generated by context free grammars,cis 530 - intro to nlp,30,scrambling: n1 n2 n3 v1 v2 v3,v1,vp,n1 vp,vp,vp,n1,e,vp,n2 vp,vp,vp,n2,v2,e,vp,vp,n3 vp,vp,vp,n3,v3,e,vp,cis 530 - intro to nlp,31,scrambling: n1 n2 n3 v1 v2 v3,vp,n1,vp,n2 vp,vp,vp,vp,n3 vp,vp,vp,n3,v3,e,vp,cis 530 - intro to nlp,32,scrambling: n1 n2 n3 v1 v2 v3,vp,vp,vp,n3,v3,e,cis 530 - intro to nlp,33,a simple synchronous tag translator,cis 530 - intro to nlp,34,substituting in “john” and “mary”,cis 530 - intro to nlp,35,substituting “apparently”,parsing tags by “supertagging”: reducing parsing to pos tagging + ,cis 530 - intro to nlp,37,supertag disambiguation - supertagging,given a corpus parsed by an ltag grammar we have statistics of supertags - unigram, bigram, trigram, etc. these statistics combine the lexical statistics as well as the statistics of the constructions in which the lexical items appear,cis 530 - intro to nlp,38,supertagging,the purchase price includes two ancillary companies,a9,b2,a1,.,.,.,a10,a6,a2,.,.,.,b1,a11,a7,a3,.,.,.,b3,a12,b4,a4,.,.,.,a13,a8,a5,.,.,.,on the average a lexical item has about 8 to 10 supertags,cis 530 - intro to nlp,39,supertagging,the purchase price includes two ancillary companies,a9,b2,a1,.,.,.,a10,a6,a2,.,.,.,b1,a11,a7,a3,.,.,.,b3,a12,b4,a4,.,.,.,a13,a8,a5,.,.,.,- select the correct supertag for each word - shown in blue - correct supertag for a word means the supertag that corresponds to that word in the correct parse of the sentence,cis 530 - intro to nlp,40,supertagging - performance,- performance of a trigram supertagger,- performance on the wsj corpus,size of the training corpus,size of the test corpus,# of words correctly supertagged,% correct,baseline,47,000,35,391,75.3%,1 million,47,000,43,334,92.2%,srinivas (1997),cis 530 - intro to nlp,41,abstract character of supertagging,complex (richer) descriptions of primitives contrary to the standard mathematical convention descriptions of primitives are simple complex descriptions are made from simple descriptions associate with each primitive all information associated with it,cis 530 - intro to nlp,42,complex descriptions of primitives,making descriptions of primitives more complex increases the local ambiguity, i.e., there are more descriptions for each primitive however, these richer descriptions of primitive
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 投标质量保证方案(3篇)
- 绿色建筑施工方案(3篇)
- 会所保安公司进场方案(3篇)
- 水饮加盟流程方案(3篇)
- 企业食堂资料管理方案(3篇)
- 山东矿井复产方案(3篇)
- 毛衣批发清仓处理方案(3篇)
- 工厂空压机检修方案(3篇)
- 一岁以内婴儿知识培训课件
- 业务场景数据分析报告模板
- 林下种植中药材的可行性方案
- 已完工程量转让协议
- 新高考数学全国卷1第20题说题课件
- 河南省2023年对口升学养殖专业试卷(专业课+基础课)
- GB/T 3098.15-2023紧固件机械性能不锈钢螺母
- 兰花花叙事曲二胡曲谱
- 调解协议书电子版5篇(可下载)
- 材料性能学(第2版)付华课件1-弹性变形
- GB/T 4909.4-2009裸电线试验方法第4部分:扭转试验
- PDCA质量持续改进案例一:降低ICU非计划拔管发生率
- 企业标准编写模板
评论
0/150
提交评论