




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏尼特右旗实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 与向量=(1,3,2)平行的一个向量的坐标是( )A(,1,1)B(1,3,2)C(,1)D(,3,2) 2 已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A4x+2y=5B4x2y=5Cx+2y=5Dx2y=53 设定义域为(0,+)的单调函数f(x),对任意的x(0,+),都有ff(x)lnx=e+1,若x0是方程f(x)f(x)=e的一个解,则x0可能存在的区间是( )A(0,1)B(e1,1)C(0,e1)D(1,e)4 用反证法证明命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”则假设的内容是( )Aa,b都能被5整除Ba,b都不能被5整除Ca,b不能被5整除Da,b有1个不能被5整除5 在ABC中,a,b,c分别是角A,B,C的对边,a=5,b=4,cosC=,则ABC的面积是( )A16B6C4D86 点集(x,y)|(|x|1)2+y2=4表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )ABCD7 给出函数,如下表,则的值域为( ) A B C D以上情况都有可能8 若直线:圆:交于两点,则弦长的最小值为( )A B C D9 已知,则fff(2)的值为( )A0B2C4D810对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1B-1C0D11袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )ABCD12在ABC中,b=,c=3,B=30,则a=( )AB2C或2D2二、填空题13等比数列an的前n项和Snk1k22n(k1,k2为常数),且a2,a3,a42成等差数列,则an_14直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为15函数的定义域是,则函数的定义域是_.11116已知定义在R上的奇函数满足,且时,则的值为 17函数y=sin2x2sinx的值域是y18若函数为奇函数,则_【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力三、解答题19已知椭圆C: =1(a2)上一点P到它的两个焦点F1(左),F2 (右)的距离的和是6(1)求椭圆C的离心率的值;(2)若PF2x轴,且p在y轴上的射影为点Q,求点Q的坐标20已知等差数列an的前n项和为Sn,公差d0,S2=4,且a2,a5,a14成等比数列()求数列an的通项公式;()从数列an中依次取出第2项,第4项,第8项,第2n项,按原来顺序组成一个新数列bn,记该数列的前n项和为Tn,求Tn的表达式21已知椭圆的离心率,且点在椭圆上()求椭圆的方程;()直线与椭圆交于、两点,且线段的垂直平分线经过点求(为坐标原点)面积的最大值22(本小题满分12分)已知函数.(1)求函数在上的最大值和最小值;(2)在中,角所对的边分别为,满足,求的值.111123已知数列an是等比数列,Sn为数列an的前n项和,且a3=3,S3=9()求数列an的通项公式;()设bn=log2,且bn为递增数列,若cn=,求证:c1+c2+c3+cn124已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程苏尼特右旗实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:对于C中的向量:(,1)=(1,3,2)=,因此与向量=(1,3,2)平行的一个向量的坐标是故选:C【点评】本题考查了向量共线定理的应用,属于基础题2 【答案】B【解析】解:线段AB的中点为,kAB=,垂直平分线的斜率 k=2,线段AB的垂直平分线的方程是 y=2(x2)4x2y5=0,故选B【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法3 【答案】 D【解析】解:由题意知:f(x)lnx为常数,令f(x)lnx=k(常数),则f(x)=lnx+k由ff(x)lnx=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f(x)=,x0f(x)f(x)=lnx+e,令g(x)=lnx+e=lnx,x(0,+)可判断:g(x)=lnx,x(0,+)上单调递增,g(1)=1,g(e)=10,x0(1,e),g(x0)=0,x0是方程f(x)f(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题4 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”故应选B【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧5 【答案】D【解析】解:a=5,b=4,cosC=,可得:sinC=,SABC=absinC=8故选:D6 【答案】A【解析】解:点集(x,y)|(|x|1)2+y2=4表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示由图可得面积S=+=+2故选:A【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想7 【答案】A【解析】试题分析:故值域为.考点:复合函数求值8 【答案】【解析】试题分析:直线,直线过定点,解得定点,当点(3,1)是弦中点时,此时弦长最小,圆心与定点的距离,弦长,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R是圆的半径,d是圆心到直线的距离.1111 9 【答案】C【解析】解:20f(2)=0f(f(2)=f(0)0=0f(0)=2即f(f(2)=f(0)=220f(2)=22=4即ff(2)=f(f(0)=f(2)=4故选C10【答案】B【解析】由题意,可取,所以11【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P=,故选:B【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题12【答案】C【解析】解:b=,c=3,B=30,由余弦定理b2=a2+c22accosB,可得:3=9+a23,整理可得:a23a+6=0,解得:a=或2故选:C二、填空题13【答案】【解析】当n1时,a1S1k12k2,当n2时,anSnSn1(k1k22n)(k1k22n1)k22n1,k12k2k220,即k1k20,又a2,a3,a42成等差数列2a3a2a42,即8k22k28k22.由联立得k11,k21,an2n1.答案:2n114【答案】 【解析】解:直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,由斜截式可得直线l的方程为,故答案为【点评】本题考查直线的斜率公式,直线方程的斜截式15【答案】【解析】考点:函数的定义域.16【答案】【解析】1111试题分析:,所以考点:利用函数性质求值17【答案】1,3 【解析】解:函数y=sin2x2sinx=(sinx1)21,1sinx1,0(sinx1)24,1(sinx1)213函数y=sin2x2sinx的值域是y1,3故答案为1,3【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键18【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得三、解答题19【答案】 【解析】解:(1)根据椭圆的定义得2a=6,a=3;c=;即椭圆的离心率是;(2);x=带入椭圆方程得,y=;所以Q(0,)20【答案】 【解析】解:()依题意得:,解得an=a1+(n1)d=1+2(n1)=2n1即an=2n1;()由已知得,Tn=b1+b2+bn=(221)+(231)+(2n+11)=(22+23+2n+1)n=【点评】本题主要考查等比数列和等差数列的性质,考查了等比数列的前n项和的求法,考查了化归与转化思想方法,是中档题21【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】()由已知,点在椭圆上,解得所求椭圆方程为()设,的垂直平分线过点,的斜率存在当直线的斜率时,当且仅当时,当直线的斜率时, 设消去得:由 ,的中点为由直线的垂直关系有,化简得 由得又到直线的距离为,时,由,解得;即时,;综上:;22【答案】(1)最大值为,最小值为;(2).【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简再利用的性质可求在上的最值;(2)利用,可得,再由余弦定理可得,再据正弦定理可得.1试题解析:(2)因为,即,又在中,由余弦定理得,所以.由正弦定理得:,即,所以.考点:1.辅助角公式;2.性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.23【答案】已知数列an是等比数列,Sn为数列an的前n项和,且a3=3,S3=9()求数列an的通项公式;()设bn=log2,且bn为递增数列,若cn=,求证:c1+c2+c3+cn1【考点】数列的求和;等比数列的通项公式【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列【分析】()设数列an的公比为q,从而可得3(1+)=9,从而解得;()讨论可知a2n+3=3()2n=3()2n,从而可得bn=log2=2n,利用裂项求和法求和【解析】解:()设数列an的公比为q,则3(1+)=9,解得,q=1或q=;故an=3,或an=3()n3;()证明:若an=3,则bn=0,与题意不符;故a2n+3=3()2n=3()2n,故bn=log2=2n,故cn=,故c1+c2+c3+cn=1+=11【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用24【答案】 【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国青年公寓装修标准与空间设计趋势研究
- 2025-2030中国青年公寓行业融资租赁与金融创新分析
- 2025-2030中国青年公寓行业市场细分与投资策略深度分析
- 2025-2030中国青年公寓行业商业模式优化与转型方向
- 2025-2030中国青年公寓行业供应链优化与集中采购策略研究
- 2025-2030中国青年公寓节能环保技术应用与成本效益分析
- 2025-2030中国青年公寓社交媒体营销效果与策略优化报告
- 2025-2030中国青年公寓智能门锁应用与安全管理
- 2025-2030中国青年公寓市场资本介入路径与退出机制分析
- 2025-2030中国青年公寓市场社群经济与增值服务研究报告
- 时文语法填空-电影篇 《731》 《长安的荔枝》 《戏台》
- 主题一 2. 设计节电方案(课件) 综合实践活动教科版五年级上册
- 生产成本控制及预算管理表格模板
- 2025年家庭健康管理师考试模拟题及答案
- 浙江省浙南名校联盟2025-2026学年高二上学期开学返校联考英语试卷(含音频)
- 砂石骨料加工管理办法
- 西师大版数学六年级上册 第一单元测试卷(A)(含解析)
- 人形机器人-价值5万亿美元的全球市场 Humanoids A $5 Trillion Global Market
- 好好说话暖人心课件
- 部队新闻培训课件
- 船员技能评估体系-洞察及研究
评论
0/150
提交评论