美溪区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第1页
美溪区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第2页
美溪区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第3页
美溪区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第4页
美溪区高中2018-2019学年上学期高三数学期末模拟试卷含答案_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

美溪区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 直角梯形中,直线截该梯形所得位于左边图形面积为,则函数的图像大致为( ) 2 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内处应填( )A11?B12?C13?D14?3 极坐标系中,点P,Q分别是曲线C1:=1与曲线C2:=2上任意两点,则|PQ|的最小值为( )A1BCD24 已知是球的球面上两点,为该球面上的动点,若三棱锥体积的最大值为,则球的体积为( )ABCD【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力5 如果函数f(x)的图象关于原点对称,在区间上是减函数,且最小值为3,那么f(x)在区间上是( )A增函数且最小值为3B增函数且最大值为3C减函数且最小值为3D减函数且最大值为3 6 已知函数,则曲线在点处切线的斜率为( )A1 B C2 D7 已知,那么夹角的余弦值( )ABC2D8 “ab,c0”是“acbc”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9 两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20,灯塔B在观察站C的南偏东40,则灯塔A与灯塔B的距离为( )AakmB akmC2akmD akm10函数f(x)=x22ax,x1,+)是增函数,则实数a的取值范围是( )ARB1,+)C(,1D2,+)11已知正方体ABCDA1B1C1D1中,点E为上底面A1C1的中心,若+,则x、y的值分别为( )Ax=1,y=1Bx=1,y=Cx=,y=Dx=,y=112已知角的终边上有一点P(1,3),则的值为( )ABCD4二、填空题13已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 14设等差数列an的前n项和为Sn,若1a31,0a63,则S9的取值范围是15的展开式中,常数项为_(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.16曲线在点(3,3)处的切线与轴x的交点的坐标为17平面向量,满足|2|=1,|2|=1,则的取值范围18如图,在长方体ABCDA1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为三、解答题19已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合)()写出曲线C的普通方程;()求B、C两点间的距离20(本小题满分12分)在多面体中,四边形与均为正方形,平面,平面,且(1)求证:平面平面;(2)求二面角的大小的余弦值 21某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米()求底面积并用含x的表达式表示池壁面积;()怎样设计水池能使总造价最低?最低造价是多少?22若已知,求sinx的值23已知p:“直线x+ym=0与圆(x1)2+y2=1相交”;q:“方程x2x+m4=0的两根异号”若pq为真,p为真,求实数m的取值范围24ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a()求;()若c2=b2+a2,求B美溪区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】C【解析】试题分析:由题意得,当时,当时,所以,结合不同段上函数的性质,可知选项C符合,故选C.考点:分段函数的解析式与图象.2 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误3 【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:=1与曲线C2:=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1故选:A【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查4 【答案】D【解析】当平面平面时,三棱锥的体积最大,且此时为球的半径设球的半径为,则由题意,得,解得,所以球的体积为,故选D5 【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础6 【答案】A【解析】试题分析:由已知得,则,所以考点:1、复合函数;2、导数的几何意义.7 【答案】A【解析】解:,=,|=, =11+3(1)=4,cos=,故选:A【点评】本题考查了向量的夹角公式,属于基础题8 【答案】A【解析】解:由“ab,c0”能推出“acbc”,是充分条件,由“acbc”推不出“ab,c0”不是必要条件,例如a=1,c=1,b=1,显然acbc,但是ab,c0,故选:A【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题9 【答案】D【解析】解:根据题意,ABC中,ACB=1802040=120,AC=BC=akm,由余弦定理,得cos120=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题10【答案】C【解析】解:由于f(x)=x22ax的对称轴是直线x=a,图象开口向上,故函数在区间(,a为减函数,在区间a,+)上为增函数,又由函数f(x)=x22ax,x1,+)是增函数,则a1故答案为:C11【答案】C【解析】解:如图,+()故选C12【答案】A【解析】解:点P(1,3)在终边上,tan=3,=故选:A二、填空题13【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键14【答案】(3,21) 【解析】解:数列an是等差数列,S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=633a33,06a618,两式相加即得3S921S9的取值范围是(3,21)故答案为:(3,21)【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题15【答案】【解析】的展开式通项为,所以当时,常数项为.16【答案】(,0) 【解析】解:y=,斜率k=y|x=3=2,切线方程是:y3=2(x3),整理得:y=2x+9,令y=0,解得:x=,故答案为:【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题17【答案】,1 【解析】解:设两个向量的夹角为,因为|2|=1,|2|=1,所以,所以, =所以5=1,所以,所以5a21, ,1,所以;故答案为:,1【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围18【答案】114 【解析】解:根据题目要求得出:当53的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(54+55+34)2=114故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题三、解答题19【答案】 【解析】解:()由曲线C的参数方程为(y为参数),消去参数t得,y2=4x()依题意,直线l的参数方程为(t为参数),代入抛物线方程得 可得,t1t2=14|BC|=|t1t2|=8【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题20【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想平面,平面平面5分21【答案】 【解析】解:()设水池的底面积为S1,池壁面积为S2,则有(平方米),可知,池底长方形宽为米,则()设总造价为y,则当且仅当,即x=40时取等号,所以x=40时,总造价最低为297600元答:x=40时,总造价最低为297600元22【答案】 【解析】解:,2,sin()=sinx=sin(x+)=sin()coscos()sin=【点评】本题考查了两角和差的余弦函数公式,属于基础题23【答案】 【解析】解:若命题p是真命题:“直线x+ym=0与圆(x1)2+y2=1相交”,则1,解得1;若命题q是真命题:“方程x2x+m4=0的两根异号”,则m40,解得m4若pq为真,p为真,则p为假命题,q为真命题实数m的取值范围是或【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题24【答案】 【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论