安源区二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
安源区二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
安源区二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
安源区二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
安源区二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷安源区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知全集U=R,集合A=1,2,3,4,5,B=xR|x3,图中阴影部分所表示的集合为( )A1B1,2C1,2,3D0,1,22 设f(x)=asin(x+)+bcos(x+)+4,其中a,b,均为非零的常数,f(1988)=3,则f(2008)的值为( )A1B3C5D不确定3 三个实数a、b、c成等比数列,且a+b+c=6,则b的取值范围是( )A6,2B6,0)( 0,2C2,0)( 0,6D(0,24 定义运算,例如若已知,则=( )ABCD5 已知函数f(x)是R上的奇函数,且当x0时,f(x)=x32x2,则x0时,函数f(x)的表达式为f(x)=( )Ax3+2x2Bx32x2Cx3+2x2Dx32x26 已知函数f(x+1)=3x+2,则f(x)的解析式是( )A3x1B3x+1C3x+2D3x+47 459和357的最大公约数( )A3B9C17D518 已知椭圆C: +=1(ab0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若AF1B的周长为4,则C的方程为( )A +=1B +y2=1C +=1D +=19 下列函数中,既是偶函数又在单调递增的函数是( )A B C D10函数f(x)=Asin(x+)(A0,0,)的部分图象如图所示,则函数y=f(x)对应的解析式为( )ABCD11设函数对一切实数都满足,且方程恰有6个不同的实根,则这6个实根的和为( )A. B. C. D.【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.12在ABC中,已知a=2,b=6,A=30,则B=( )A60B120C120或60D45二、填空题13若函数为奇函数,则_【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力14设集合A=x|x+m0,B=x|2x4,全集U=R,且(UA)B=,求实数m的取值范围为15抛物线y2=8x上到焦点距离等于6的点的坐标是16【徐州市第三中学20172018学年度高三第一学期月考】函数的单调增区间是_17台风“海马”以25km/h的速度向正北方向移动,观测站位于海上的A点,早上9点观测,台风中心位于其东南方向的B点;早上10点观测,台风中心位于其南偏东75方向上的C点,这时观测站与台风中心的距离AC等于km18已知数列an满足an+1=e+an(nN*,e=2.71828)且a3=4e,则a2015=三、解答题19已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程20已知椭圆C: +=1(ab0)与双曲线y2=1的离心率互为倒数,且直线xy2=0经过椭圆的右顶点()求椭圆C的标准方程;()设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求OMN面积的取值范围21(本小题满分12分)的内角所对的边分别为,垂直.(1)求的值;(2)若,求的面积的最大值.22已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程23【常熟中学2018届高三10月阶段性抽测(一)】已知函数.(1)若函数是单调递减函数,求实数的取值范围;(2)若函数在区间上既有极大值又有极小值,求实数的取值范围.24已知命题p:方程表示焦点在x轴上的双曲线命题q:曲线y=x2+(2m3)x+1与x轴交于不同的两点,若pq为假命题,pq为真命题,求实数m的取值范围安源区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中由韦恩图可知阴影部分表示的集合为(CUB)A,又A=1,2,3,4,5,B=xR|x3,CUB=x|x3,(CUB)A=1,2则图中阴影部分表示的集合是:1,2故选B【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想属于基础题2 【答案】B【解析】解:f(1988)=asin(1988+)+bcos(1998+)+4=asin+bcos+4=3,asin+bcos=1,故f(2008)=asin(2008+)+bcos(2008+)+4=asin+bcos+4=1+4=3,故选:B【点评】本题主要考查利用诱导公式进行化简求值,属于中档题3 【答案】B【解析】解:设此等比数列的公比为q,a+b+c=6,=6,b=当q0时, =2,当且仅当q=1时取等号,此时b(0,2;当q0时,b=6,当且仅当q=1时取等号,此时b6,0)b的取值范围是6,0)( 0,2故选:B【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题4 【答案】D【解析】解:由新定义可得, =故选:D【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题5 【答案】A【解析】解:设x0时,则x0,因为当x0时,f(x)=x32x2所以f(x)=(x)32(x)2=x32x2,又因为f(x)是定义在R上的奇函数,所以f(x)=f(x),所以当x0时,函数f(x)的表达式为f(x)=x3+2x2,故选A6 【答案】A【解析】f(x+1)=3x+2=3(x+1)1f(x)=3x1故答案是:A【点评】考察复合函数的转化,属于基础题7 【答案】D【解析】解:459357=1102,357102=351,10251=2,459和357的最大公约数是51,故选:D【点评】本题考查辗转相除法,这是一个算法案例,还有一个求最大公约数的方法是更相减损法,这种题目出现的比较少,但是要掌握题目的解法本题也可以验证得到结果8 【答案】A【解析】解:AF1B的周长为4,AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,4a=4,a=,离心率为,c=1,b=,椭圆C的方程为+=1故选:A【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题9 【答案】C【解析】试题分析:函数为奇函数,不合题意;函数是偶函数,但是在区间上单调递减,不合题意;函数为非奇非偶函数。故选C。考点:1.函数的单调性;2.函数的奇偶性。10【答案】A【解析】解:由函数的图象可得A=1, =,解得=2,再把点(,1)代入函数的解析式可得 sin(2+)=1,结合,可得=,故有,故选:A11【答案】A.【解析】,的图象关于直线对称,个实根的和为,故选A.12【答案】C【解析】解:a=2,b=6,A=30,由正弦定理可得:sinB=,B(0,180),B=120或60故选:C二、填空题13【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得14【答案】m2 【解析】解:集合A=x|x+m0=x|xm,全集U=R,所以CUA=x|xm,又B=x|2x4,且(UA)B=,所以有m2,所以m2故答案为m215【答案】(4,) 【解析】解:抛物线方程为y2=8x,可得2p=8, =2抛物线的焦点为F(2,0),准线为x=2设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=m+2=6,解得m=4,n2=8m=32,可得n=4,因此,点P的坐标为(4,)故答案为:(4,)【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标着重考查了抛物线的定义与标准方程等知识,属于基础题16【答案】【解析】 ,所以增区间是17【答案】25 【解析】解:由题意,ABC=135,A=7545=30,BC=25km,由正弦定理可得AC=25km,故答案为:25【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键18【答案】2016 【解析】解:由an+1=e+an,得an+1an=e,数列an是以e为公差的等差数列,则a1=a32e=4e2e=2e,a2015=a1+2014e=2e+2014e=2016e故答案为:2016e【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题三、解答题19【答案】 【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,所以,圆心坐标是(0,7),半径长r=5因为直线l被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l的距离为因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2xy+b=0所以圆心到直线l的距离为,因此,解得b=2,或b=12所以,所求直线l的方程为y=2x2,或y=2x12即2xy2=0,或2xy12=0【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用20【答案】 【解析】解:()双曲线的离心率为,所以椭圆的离心率,又直线xy2=0经过椭圆的右顶点,右顶点为(2,0),即a=2,c=,b=1,椭圆方程为:()由题意可设直线的方程为:y=kx+m(k0,m0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m21)=0则,于是又直线OM、MN、ON的斜率依次成等比数列由m0得:又由=64k2m216(1+4k2)(m21)=16(4k2m2+1)0,得:0m22显然m21(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾) 设原点O到直线的距离为d,则故由m的取值范围可得OMN面积的取值范围为(0,1)【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力21【答案】(1);(2)4【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得,由同角关系得;(2)由于已知边及角,因此在(1)中等式中由基本不等式可求得,从而由公式可得面积的最大值试题解析:(1),垂直,考点:向量的数量积,正弦定理,余弦定理,基本不等式11122【答案】 【解析】解:由题意可设抛物线的方程y2=2px(p0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程可得,4x2+(42p)x+1=0则,y1y2=2(x1x2)=解得p=6或p=2抛物线的方程为y2=12x或y2=4x【点评】本题主要考查了抛物线的标准方程解题的关键是对抛物线基本性质和标准方程的熟练应用23【答案】(1);(2).【解析】试题分析:(1)原问题等价于对恒成立,即对恒成立,结合均值不等式的结论可得;(2)由题意可知在上有两个相异实根,结合二次函数根的分布可得实数的取值范围是.试题解析:(2)函数在上既有极大值又有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论