




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷上犹县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 复数i1(i是虚数单位)的虚部是( )A1B1CiDi2 设集合S=|x|x1或x5,T=x|axa+8,且ST=R,则实数a的取值范围是( )A3a1B3a1Ca3或a1Da3或a13 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f(x)有如下四个命题:f(f(x)=1;函数f(x)是偶函数;任取一个不为零的有理数T,f(x+T)=f(x)对任意的x=R恒成立;存在三个点A(x1,f(x1),B(x2,f(x2),C(x3,f(x3),使得ABC为等边三角形其中真命题的个数有( )A1个B2个C3个D4个4 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )ABCD5 函数y=2|x|的图象是( )ABCD6 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )AB(4+)CD7 函数y=2|x|的定义域为a,b,值域为1,16,当a变动时,函数b=g(a)的图象可以是( )ABCD8 已知集合A=x|x0,且AB=B,则集合B可能是( )Ax|x0Bx|x1C1,0,1DR9 定义集合运算:A*B=z|z=xy,xA,yB设A=1,2,B=0,2,则集合A*B的所有元素之和为( )A0B2C3D610已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则实数的取值范围是( )A B C D【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.11已知函数 f(x)的定义域为R,其导函数f(x)的图象如图所示,则对于任意x1,x2R( x1x2),下列结论正确的是( )f(x)0恒成立;(x1x2)f(x1)f(x2)0;(x1x2)f(x1)f(x2)0;ABCD12若直线:圆:交于两点,则弦长的最小值为( )A B C D二、填空题13一组数据2,x,4,6,10的平均值是5,则此组数据的标准差是14设MP和OM分别是角的正弦线和余弦线,则给出的以下不等式:MPOM0;OM0MP;OMMP0;MP0OM,其中正确的是(把所有正确的序号都填上)15如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 16Sn=+=17【南通中学2018届高三10月月考】已知函数,若曲线在点处的切线经过圆的圆心,则实数的值为_18已知实数x,y满足,则目标函数z=x3y的最大值为三、解答题19如图,在底面是矩形的四棱锥PABCD中,PA平面ABCD,PA=AB=2,BC=2,E是PD的中点(1)求证:平面PDC平面PAD;(2)求二面角EACD所成平面角的余弦值20(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程21已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合)()写出曲线C的普通方程;()求B、C两点间的距离22 坐标系与参数方程线l:3x+4y12=0与圆C:(为参数 )试判断他们的公共点个数 23已知函数f(x)=2cosx(sinx+cosx)1()求f(x)在区间0,上的最大值;()在ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围24已知y=f(x)是R上的偶函数,x0时,f(x)=x22x(1)当x0时,求f(x)的解析式(2)作出函数f(x)的图象,并指出其单调区间上犹县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:由复数虚部的定义知,i1的虚部是1,故选A【点评】该题考查复数的基本概念,属基础题2 【答案】A【解析】解:S=|x|x1或x5,T=x|axa+8,且ST=R,解得:3a1故选:A【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题3 【答案】 D【解析】解:当x为有理数时,f(x)=1;当x为无理数时,f(x)=0当x为有理数时,f(f(x)=f(1)=1;当x为无理数时,f(f(x)=f(0)=1即不管x是有理数还是无理数,均有f(f(x)=1,故正确;有理数的相反数还是有理数,无理数的相反数还是无理数,对任意xR,都有f(x)=f(x),故正确; 若x是有理数,则x+T也是有理数; 若x是无理数,则x+T也是无理数根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对xR恒成立,故正确; 取x1=,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0A(,0),B(0,1),C(,0),恰好ABC为等边三角形,故正确故选:D【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题4 【答案】C【解析】解:如图所示,BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A=弦长超过圆内接等边三角形的边长=弦中点在内切圆内,由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是故选C【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答5 【答案】B【解析】解:f(x)=2|x|=2|x|=f(x)y=2|x|是偶函数,又函数y=2|x|在0,+)上单调递增,故C错误且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键6 【答案】 D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,几何体的体积是=,故选D【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察7 【答案】B【解析】解:根据选项可知a0a变动时,函数y=2|x|的定义域为a,b,值域为1,16,2|b|=16,b=4故选B【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题8 【答案】A【解析】解:由A=x|x0,且AB=B,所以BAA、x|x0=x|x0=A,故本选项正确;B、x|x1,xR=(,10,+),故本选项错误;C、若B=1,0,1,则AB=0,1B,故本选项错误;D、给出的集合是R,不合题意,故本选项错误故选:A【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题9 【答案】D【解析】解:根据题意,设A=1,2,B=0,2,则集合A*B中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B=0,2,4,其所有元素之和为6;故选D【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍10【答案】C【解析】画出可行域如图所示,要使目标函数取得最大值时有唯一的最优解,则需直线过点时截距最大,即最大,此时即可.11【答案】 D【解析】解:由导函数的图象可知,导函数f(x)的图象在x轴下方,即f(x)0,故原函数为减函数,并且是,递减的速度是先快后慢所以f(x)的图象如图所示f(x)0恒成立,没有依据,故不正确;表示(x1x2)与f(x1)f(x2)异号,即f(x)为减函数故正确;表示(x1x2)与f(x1)f(x2)同号,即f(x)为增函数故不正确,左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故不正确,正确,综上,正确的结论为故选D12【答案】【解析】试题分析:直线,直线过定点,解得定点,当点(3,1)是弦中点时,此时弦长最小,圆心与定点的距离,弦长,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R是圆的半径,d是圆心到直线的距离.1111 二、填空题13【答案】2 【解析】解:一组数据2,x,4,6,10的平均值是5,2+x+4+6+10=55,解得x=3,此组数据的方差 (25)2+(35)2+(45)2+(65)2+(105)2=8,此组数据的标准差S=2故答案为:2【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法14【答案】 【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,OM0MP故答案为:【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小15【答案】 【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”三视图是新课标的新增内容,在以后的高考中有加强的可能16【答案】 【解析】解: =(),Sn=+= (1)+()+()+()=(1)=,故答案为:【点评】本题主要考查利用裂项法进行数列求和,属于中档题17【答案】【解析】结合函数的解析式可得:,对函数求导可得:,故切线的斜率为,则切线方程为:,即,圆:的圆心为,则:.18【答案】5 【解析】解:由z=x3y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点C时,直线y=的截距最小,此时z最大,由,解得,即C(2,1)代入目标函数z=x3y,得z=23(1)=2+3=5,故答案为:5三、解答题19【答案】 【解析】解:(1)PA平面ABCD,CD平面ABCD,PACDADCD,PA、AD是平面PAD内的相交直线,CD平面PADCD平面PDC,平面PDC平面PAD;(2)取AD中点O,连接EO,PAD中,EO是中位线,EOPAPA平面ABCD,EO平面ABCD,AC平面ABCD,EOAC过O作OFAC于F,连接EF,则EO、OF是平面OEF内的相交直线,AC平面OEF,所以EFACEFO就是二面角EACD的平面角由PA=2,得EO=1,在RtADC中,设AC边上的高为h,则ADDC=ACh,得h=O是AD的中点,OF=EO=1,RtEOF中,EF=cosEFO=【点评】本题给出特殊的四棱锥,叫我们证明面面垂直并求二面角的余弦值,着重考查了平面与平面所成角的求法和线面垂直的判定与性质等知识,属于中档题20【答案】 【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为=1(0),由题意可得c2=4|+9|=13,解得=1即有双曲线的方程为=1或=121【答案】 【解析】解:()由曲线C的参数方程为(y为参数),消去参数t得,y2=4x()依题意,直线l的参数方程为(t为参数),代入抛物线方程得 可得,t1t2=14|BC|=|t1t2|=8【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题22【答案】 【解析】解:圆C:的标准方程为(x+1)2+(y2)2=4由于圆心C(1,2)到直线l:3x+4y12=0的距离d=2故直线与圆相交故他们的公共点有两个【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键 23【答案】 【解析】(本题满分为12分)解:()f(x)=2cosx(sinx+cosx)1=2sinxcosx+2cos2x1=sin2x+21=sin2x+cos2x=sin(2x+),x0,2x+,当2x+=,即x=时,f(x)min=6分()由()可知f(B)=sin(+)=1,sin(+)=,+=,B=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园食品入校管理制度
- 曲阜夫子学校管理制度
- 核电安全规章管理制度
- 江苏工程建设管理制度
- 2025-2030中国小儿肠胃药行业需求态势与竞争前景预测报告
- 2025-2030中国反向喷射过滤器行业未来趋势与应用前景预测报告
- 2025-2030中国公共服务平台行业现状规模与经营效益预测报告
- 2025-2030中国便携式测氧仪行业前景趋势与投资动态预测报告
- 2024年辽宁城市建设职业技术学院辅导员考试真题
- 2024年咸阳市杨凌示范区杨凌示范区教育局引进教师笔试真题
- 2024-2025学年湘少版(三起)(2024)小学英语三年级下册(全册)知识点归纳
- 《义务教育生物课程标准(2022年版)》解读
- 承包安全协议书
- 广东食品安全管理人员抽查考核题库附答案
- 2025年白芷种植市场调研报告
- 《DTP药房管理中静脉注射类创新药物患者用药风险识别分析5400字》
- 全国行政区域身份证代码表(电子表格版)
- 期末复习人教PEP版英语五年级下册
- 微弱的光亮(2024年山东烟台中考语文试卷记叙文阅读试题)
- 渠道安全巡检注意事项
- 互联网医院共建合同
评论
0/150
提交评论