




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷洪洞县三中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知函数f(x)=1+x+,则下列结论正确的是( )Af(x)在(0,1)上恰有一个零点Bf(x)在(1,0)上恰有一个零点Cf(x)在(0,1)上恰有两个零点Df(x)在(1,0)上恰有两个零点2 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士不同的分配方法共有( )A90种B180种C270种D540种3 若圆上有且仅有三个点到直线是实数)的距离为,则( )A B C D4 命题“xR,使得x21”的否定是( )AxR,都有x21 BxR,使得x21CxR,使得x21DxR,都有x1或x15 求值: =( )Atan 38BCD6 函数y=2x2e|x|在2,2的图象大致为( )ABCD7 已知集合A=0,1,2,则集合B=xy|xA,yA的元素个数为( )A4B5C6D98 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )Ai21Bi11Ci21Di119 在ABC中,a=1,b=4,C=60,则边长c=( )A13BCD2110是平面内不共线的两向量,已知,若三点共线,则的值是( )A1 B2 C-1 D-211如果点在平面区域上,点在曲线上,那么的最小值为( )A B C. D12全称命题:xR,x20的否定是( )AxR,x20BxR,x20CxR,x20DxR,x20二、填空题13多面体的三视图如图所示,则该多面体体积为(单位cm)14设数列an满足a1=1,且an+1an=n+1(nN*),则数列的前10项的和为15小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米(太阳光线可看作为平行光线) 16若点p(1,1)为圆(x3)2+y2=9的弦MN的中点,则弦MN所在直线方程为 17方程(x+y1)=0所表示的曲线是18下列四个命题申是真命题的是(填所有真命题的序号)“pq为真”是“pq为真”的充分不必要条件;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30的角;动圆P过定点A(2,0),且在定圆B:(x2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆三、解答题19设函数f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12(1)求a,b的值(2)当x1,2时,求f(x)的最大值(3)m为何值时,函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点 20已知函数f(x)=cosx(sinx+cosx)(1)若0,且sin=,求f()的值;(2)求函数f(x)的最小正周期及单调递增区间21已知:函数f(x)=log2,g(x)=2ax+1a,又h(x)=f(x)+g(x)(1)当a=1时,求证:h(x)在x(1,+)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围22如图,在平面直角坐标系xOy中,以x为始边作两个锐角,它们的终边分别与单位圆交于A,B两点已知A,B的横坐标分别为,(1)求tan(+)的值; (2)求2+的值23如图所示,在正方体中(1)求与所成角的大小;(2)若、分别为、的中点,求与所成角的大小24设函数f(x)=|xa|2|x1|()当a=3时,解不等式f(x)1;()若f(x)|2x5|0对任意的x1,2恒成立,求实数a的取值范围 洪洞县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:f(x)=1x+x2x3+x2014=(1x)(1+x2+x2012)+x2014;f(x)0在(1,0)上恒成立;故f(x)在(1,0)上是增函数;又f(0)=1,f(1)=110;故f(x)在(1,0)上恰有一个零点;故选B【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题2 【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种故选D3 【答案】B【解析】试题分析:由圆,可得,所以圆心坐标为,半径为,要使得圆上有且仅有三个点到直线是实数)的距离为,则圆心到直线的距离等于,即,解得,故选B. 1考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于是解答的关键. 4 【答案】D【解析】解:命题是特称命题,则命题的否定是xR,都有x1或x1,故选:D【点评】本题主要考查含有量词的命题的否定,比较基础5 【答案】C【解析】解: =tan(49+11)=tan60=,故选:C【点评】本题主要考查两角和的正切公式的应用,属于基础题6 【答案】D【解析】解:f(x)=y=2x2e|x|,f(x)=2(x)2e|x|=2x2e|x|,故函数为偶函数,当x=2时,y=8e2(0,1),故排除A,B; 当x0,2时,f(x)=y=2x2ex,f(x)=4xex=0有解,故函数y=2x2e|x|在0,2不是单调的,故排除C,故选:D7 【答案】B【解析】解:x=0时,y=0,1,2,xy=0,1,2;x=1时,y=0,1,2,xy=1,0,1;x=2时,y=0,1,2,xy=2,1,0;B=0,1,2,1,2,共5个元素故选:B8 【答案】D【解析】解:S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i10,应不满足条件,继续循环当i11,应满足条件,退出循环填入“i11”故选D9 【答案】B【解析】解:a=1,b=4,C=60,由余弦定理可得:c=故选:B10【答案】B【解析】考点:向量共线定理11【答案】A【解析】试题分析:根据约束条件画出可行域表示圆上的点到可行域的距离,当在点处时,求出圆心到可行域的距离内的点的最小距离,当在点处最小, 最小值为,因此,本题正确答案是.考点:线性规划求最值.12【答案】D【解析】解:命题:xR,x20的否定是:xR,x20故选D【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“”的否定用“”了这里就有注意量词的否定形式如“都是”的否定是“不都是”,而不是“都不是”特称命题的否定是全称命题,“存在”对应“任意”二、填空题13【答案】cm3 【解析】解:如图所示,由三视图可知:该几何体为三棱锥PABC该几何体可以看成是两个底面均为PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:PCD的面积S=44=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=84=cm3,故答案为: cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键14【答案】 【解析】解:数列an满足a1=1,且an+1an=n+1(nN*),当n2时,an=(anan1)+(a2a1)+a1=n+2+1=当n=1时,上式也成立,an=2数列的前n项的和Sn=数列的前10项的和为故答案为:15【答案】3.3 【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子设BC=x,则根据题意=,AB=x,在AE=ABBE=x1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3【点评】本题主要考查了解三角形的实际应用解题的关键是建立数学模型,把实际问题转化为数学问题16【答案】:2xy1=0解:P(1,1)为圆(x3)2+y2=9的弦MN的中点,圆心与点P确定的直线斜率为=,弦MN所在直线的斜率为2,则弦MN所在直线的方程为y1=2(x1),即2xy1=0故答案为:2xy1=017【答案】两条射线和一个圆 【解析】解:由题意可得x2+y240,表示的区域是以原点为圆心的圆的外部以及圆上的部分由方程(x+y1)=0,可得x+y1=0,或 x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆【点评】本题主要考查直线和圆的方程的特征,属于基础题18【答案】 【解析】解:“pq为真”,则p,q同时为真命题,则“pq为真”,当p真q假时,满足pq为真,但pq为假,则“pq为真”是“pq为真”的充分不必要条件正确,故正确;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故错误,设正三棱锥为PABC,顶点P在底面的射影为O,则O为ABC的中心,PCO为侧棱与底面所成角正三棱锥的底面边长为3,CO=侧棱长为2,在直角POC中,tanPCO=侧棱与底面所成角的正切值为,即侧棱与底面所成角为30,故正确,如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=64=|AB|点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故正确,故答案为:三、解答题19【答案】 【解析】解:(1)f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12,ab=2,a2b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x2x),当x1,2时,4x2x2,12,故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点则4x2x=m有两个解,令t=2x,则t0,则t2t=m有两个正解;则,解得:m(,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键20【答案】 【解析】解:(1)0,且sin=,cos=,f()=cos(sin+cos),=(+)=(2)f(x)=cosx(sinx+cosx)=sinxcosx+cos2x=sin2x+cos2x=sin(2x+),T=,由2k2x+2k+,kZ,得kxk+,kZ,f(x)的单调递增区间为k,k+,kZ21【答案】 【解析】解:(1)证明:h(x)=f(x)+g(x)=log2+2x,=log2(1)+2x;y=1在(1,+)上是增函数,故y=log2(1)在(1,+)上是增函数;又y=2x在(1,+)上是增函数;h(x)在x(1,+)上单调递增;同理可证,h(x)在(,1)上单调递增;而h(1.1)=log221+2.20,h(2)=log23+40;故h(x)在(1,+)上有且仅有一个零点,同理可证h(x)在(,1)上有且仅有一个零点,故函数h(x)有两个零点;(2)由题意,关于x的方程f(x)=log2g(x)有两个不相等实数根可化为1=2ax+1a在(,1)(1,+)上有两个不相等实数根;故a=;结合函数a=的图象可得,a0;即1a0【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题22【答案】 【解析】解:(1)由已知得:,为锐角,(2),为锐角,23【答案】(1);(2)【解析】试题解析:(1)连接,由是正方体,知为平行四边形,所以,从而与所成的角就是与所成的角由可知,即与所成的角为考点:异面直线的所成的角【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑行业农民工权益保障现状及2025年数字化用工模式研究报告
- 传达外出管理办法信息
- 住房装修管理办法浙江
- 云南高校收费管理办法
- 代管资金机构管理办法
- 信息合法收集管理办法
- 企业煤场人员管理办法
- 2025年绿色建材市场推广与政策支持下的绿色建筑市场拓展策略创新研究报告
- 企业账务集中管理办法
- 会员积分考核管理办法
- 斜视弱视学试题及答案
- MT/T 1222-2024液压支架再制造工程设计指南
- 2025-2030中国锻条行业市场现状分析及竞争格局与投资发展研究报告
- GB/T 30134-2025冷库管理规范
- 《成人糖尿病患者的高血糖危象:共识报告》-学习与应用
- 遵义社工面试真题及答案
- 金属材料的断裂和断裂韧性
- 脑卒中急救培训课件
- 2025年上海中考复习必背英语考纲词汇表默写(汉英互译)
- 《中国脑卒中防治报告(2023)》
- 集团公司企业各岗位廉洁风险点防控表格(41份)
评论
0/150
提交评论