




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷阳泉市二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若函数y=f(x)是y=3x的反函数,则f(3)的值是( )A0B1CD32 过点(1,3)且平行于直线x2y+3=0的直线方程为( )Ax2y+7=0B2x+y1=0Cx2y5=0D2x+y5=03 下列函数在(0,+)上是增函数的是( )ABy=2x+5Cy=lnxDy=4 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A. B.C. D. 【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力5 等差数列an中,a1+a5=10,a4=7,则数列an的公差为( )A1B2C3D46 在复平面内,复数Z=+i2015对应的点位于( )A第四象限B第三象限C第二象限D第一象限7 集合的真子集共有( )A个 B个 C个 D个8 lgx,lgy,lgz成等差数列是由y2=zx成立的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件9 已知|=3,|=1,与的夹角为,那么|4|等于( )A2BCD1310在ABC中,b=,c=3,B=30,则a=( )AB2C或2D211定义新运算:当ab时,ab=a;当ab时,ab=b2,则函数f(x)=(1x)x(2x),x2,2的最大值等于( )A1B1C6D1212若函数的定义域是,则函数的定义域是( )A B C D二、填空题13某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为14如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15方向,这时船与灯塔间的距离为km15一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为16设向量a(1,1),b(0,t),若(2ab)a2,则t_17下列关于圆锥曲线的命题:其中真命题的序号(写出所有真命题的序号)设A,B为两个定点,若|PA|PB|=2,则动点P的轨迹为双曲线;设A,B为两个定点,若动点P满足|PA|=10|PB|,且|AB|=6,则|PA|的最大值为8;方程2x25x+2=0的两根可分别作椭圆和双曲线的离心率;双曲线=1与椭圆有相同的焦点18直角坐标P(1,1)的极坐标为(0,0)三、解答题19 (本题满分12分)在如图所示的几何体中,四边形为矩形,直线平面,点在棱上.(1)求证:;(2)若是的中点,求异面直线与所成角的余弦值;(3)若,求二面角的余弦值.20将射线y=x(x0)绕着原点逆时针旋转后所得的射线经过点A=(cos,sin)()求点A的坐标;()若向量=(sin2x,2cos),=(3sin,2cos2x),求函数f(x)=,x0,的值域21已知P(m,n)是函授f(x)=ex1图象上任一于点()若点P关于直线y=x1的对称点为Q(x,y),求Q点坐标满足的函数关系式()已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数(s,t)=|sex11|+|tln(t1)|,(sR,t0)的最小值22已知:函数f(x)=log2,g(x)=2ax+1a,又h(x)=f(x)+g(x)(1)当a=1时,求证:h(x)在x(1,+)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围23【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=(2a)(x1)2lnx,g(x)=(aR,e为自然对数的底数)()当a=1时,求f(x)的单调区间;()若函数f(x)在上无零点,求a的最小值;()若对任意给定的x0(0,e,在(0,e上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围24某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(单位:元)88.28.48.68.89销量y(单位:万件)908483807568(1)现有三条y对x的回归直线方程: =10x+170; =20x+250; =15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入成本)阳泉市二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:指数函数的反函数是对数函数,函数y=3x的反函数为y=f(x)=log3x,所以f(9)=log33=1故选:B【点评】本题给出f(x)是函数y=3x(xR)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题2 【答案】A【解析】解:由题意可设所求的直线方程为x2y+c=0过点(1,3)代入可得16+c=0 则c=7x2y+7=0故选A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=03 【答案】C【解析】解:对于A,函数y=在(,+)上是减函数,不满足题意;对于B,函数y=2x+5在(,+)上是减函数,不满足题意;对于C,函数y=lnx在(0,+)上是增函数,满足题意;对于D,函数y=在(0,+)上是减函数,不满足题意故选:C【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目4 【答案】B 5 【答案】B【解析】解:设数列an的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B6 【答案】A【解析】解:复数Z=+i2015=i=i=复数对应点的坐标(),在第四象限故选:A【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查7 【答案】C【解析】考点:真子集的概念.8 【答案】A【解析】解:lgx,lgy,lgz成等差数列,2lgy=lgxlgz,即y2=zx,充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题9 【答案】C【解析】解:|=3,|=1,与的夹角为,可得=|cos,=31=,即有|4|=故选:C【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题10【答案】C【解析】解:b=,c=3,B=30,由余弦定理b2=a2+c22accosB,可得:3=9+a23,整理可得:a23a+6=0,解得:a=或2故选:C11【答案】C【解析】解:由题意知当2x1时,f(x)=x2,当1x2时,f(x)=x32,又f(x)=x2,f(x)=x32在定义域上都为增函数,f(x)的最大值为f(2)=232=6故选C12【答案】B 【解析】二、填空题13【答案】12 【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15x)人,只喜爱乒乓球的有(10x)人,由此可得(15x)+(10x)+x+8=30,解得x=3,所以15x=12,即所求人数为12人,故答案为:1214【答案】 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=海里,则这时船与灯塔的距离为海里故答案为15【答案】300 【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15=300故答案为:300【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目16【答案】【解析】(2ab)a(2,2t)(1,1)21(2t)(1)4t2,t2.答案:217【答案】 【解析】解:根据双曲线的定义可知,满足|PA|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以错误由|PA|=10|PB|,得|PA|+|PB|=10|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以正确方程2x25x+2=0的两个根为x=2或x=,所以方程2x25x+2=0的两根可分别作椭圆和双曲线的离心率,所以正确由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以错误故正确的命题为故答案为:【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质18【答案】 【解析】解:=,tan=1,且0,=点P的极坐标为故答案为:三、解答题19【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为平面,所以平面的一个法向量.由知为的三等分点且此时.在平面中,.所以平面的一个法向量.10分所以,又因为二面角的大小为锐角,所以该二面角的余弦值为.12分20【答案】 【解析】解:()设射线y=x(x0)的倾斜角为,则tan=,(0,)tan=tan(+)=,由解得,点A的坐标为(,)()f(x)=3sinsin2x+2cos2cos2x=sin2x+cos2x=sin(2x+)由x0,可得2x+,sin(2x+),1,函数f(x)的值域为,【点评】本题考查三角函数、平面向量等基础知识,考查运算求解能力,考查函数与方程的思想,属于中档题21【答案】 【解析】解:(1)因为点P,Q关于直线y=x1对称,所以解得又n=em1,所以x=1e(y+1)1,即y=ln(x1)(2)(s,t)=|sex11|+|tln(t1)1|=,令u(s)=则u(s),v(t)分别表示函数y=ex1,y=ln(t1)图象上点到直线xy1=0的距离由(1)知,umin(s)=vmin(t)而f(x)=ex1,令f(s)=1得s=1,所以umin(s)=故【点评】本题一方面考查了点之间的轴对称问题,同时利用函数式的几何意义将问题转化为点到直线的距离,然后再利用函数的思想求解体现了解析几何与函数思想的结合22【答案】 【解析】解:(1)证明:h(x)=f(x)+g(x)=log2+2x,=log2(1)+2x;y=1在(1,+)上是增函数,故y=log2(1)在(1,+)上是增函数;又y=2x在(1,+)上是增函数;h(x)在x(1,+)上单调递增;同理可证,h(x)在(,1)上单调递增;而h(1.1)=log221+2.20,h(2)=log23+40;故h(x)在(1,+)上有且仅有一个零点,同理可证h(x)在(,1)上有且仅有一个零点,故函数h(x)有两个零点;(2)由题意,关于x的方程f(x)=log2g(x)有两个不相等实数根可化为1=2ax+1a在(,1)(1,+)上有两个不相等实数根;故a=;结合函数a=的图象可得,a0;即1a0【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题23【答案】(1) f(x)的单调减区间为(0,2,单调增区间为2,+);(2) 函数f(x)在 上无零点,则a的最小值为24ln2;(3)a的范围是.【解析】试题分析:()把a=1代入到f(x)中求出f(x),令f(x)0求出x的范围即为函数的增区间,令f(x)0求出x的范围即为函数的减区间;()f(x)0时不可能恒成立,所以要使函数在(0,)上无零点,只需要对x(0,)时f(x)0恒成立,列出不等式解出a大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a的最小值;试题解析:(1)当a=1时,f(x)=x12lnx,则f(x)=1,由f(x)0,得x2;由f(x)0,得0x2故f(x)的单调减区间为(0,2,单调增区间为2,+);(2)因为f(x)0在区间上恒成立不可能,故要使函数上无零点,只要对任意的,f(x)0恒成立,即对恒成立令,则,再令,则,故m(x)在上为减函数,于是,从而,l(x)0,于是l(x)在上为增函数,所以,故要使恒成立,只要a24ln2,+),综上,若函数f(x)在 上无零点,则a的最小值为24ln2;(3)g(x)=e1xxe1x=(1x)e1x,当x(0,1)时,g(x)0,函数g(x)单调递增;当x(1,e时,g(x)0,函数g(x)单调递减又因为g(0)=0,g(1)=1,g(e)=ee1e0,所以,函数g(x)在(0,e上的值域为(0,1当a=2时,不合题意;当a2时,f(x)=,x(0,e当x=时,f(x)=0由题意得,f(x)在(0,e上不单调,故,即此时,当x变化时,f(x),f(x)的变化情况如下:x(0,)(,ef(x)0+f(x)最小值又因为,当x0时,2a0,f(x)+,所以,对任意给定的x0(0,e,在(0,e上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,当且仅当a满足下列条件:即令h(a)=,则h,令h(a)=0,得a=0或a=2,故当a(,0)时,h(a)0,函数h(a)单调递增;当时,h(a)0,函数h(a)单调递减所以,对任意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤炭会计面试题及答案
- 新教育学试题及答案
- 校园保安业务知识培训课件
- 立宪制考试题及答案
- 2025年广州市花都区花东学校教师招聘考试笔试试题(含答案)
- 2025年佛山市南海区丹灶镇教育发展中心招聘考试试题(含答案)
- 临床护理技术操作常见并发症的预防与处理理论试题(有答案)
- 树立正确政绩观课件
- 余热发电属地及没备卫生检查培训试题及答案
- 医院感染暴发的报告流程和处置的试题和答案
- 做新时代的青年马克思主义者讲课
- 《递延所得税讲解》课件
- 肌张力障碍演示课件
- 锅炉安全技术规程标准(TSG 11-2020)
- 员工薪资调整审批表
- 中医妇科学:女性的生殖脏器
- 除锈剂MSDS参考资料
- 明渠均匀流计算公式
- 《纯物质热化学数据手册》
- 中国儿童严重过敏反应诊断与治疗建议(2022年)解读
- 电动力学-同济大学中国大学mooc课后章节答案期末考试题库2023年
评论
0/150
提交评论