古塔区二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
古塔区二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
古塔区二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
古塔区二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
古塔区二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷古塔区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )AB4CD22 下列各组函数中,表示同一函数的是( )A、x与 B、 与 C、与 D、与3 已知向量=(1,2),=(m,1),如果向量与平行,则m的值为( )ABC2D24 A=x|x1,B=x|x2或x0,则AB=( )A(0,1) B(,2)C(2,0) D(,2)(0,1)5 已知函数f(x)=lg(1x)的值域为(,1,则函数f(x)的定义域为( )A9,+)B0,+)C(9,1)D9,1)6 设集合A=x|2x4,集合B=x|y=lg(x1),则AB等于( )A(1,2)B1,2C1,2)D(1,27 常用以下方法求函数y=f(x)g(x)的导数:先两边同取以e为底的对数(e2.71828,为自然对数的底数)得lny=g(x)lnf(x),再两边同时求导,得y=g(x)lnf(x)+g(x)lnf(x),即y=f(x)g(x)g(x)lnf(x)+g(x)lnf(x)运用此方法可以求函数h(x)=xx(x0)的导函数据此可以判断下列各函数值中最小的是( )Ah()Bh()Ch()Dh()8 函数f(x)=有且只有一个零点时,a的取值范围是( )Aa0B0aCa1Da0或a19 下面各组函数中为相同函数的是( )Af(x)=,g(x)=x1Bf(x)=,g(x)=Cf(x)=ln ex与g(x)=elnxDf(x)=(x1)0与g(x)=10已知正ABC的边长为a,那么ABC的平面直观图ABC的面积为( )ABCD11下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A B C D12设F1,F2分别是椭圆+=1(ab0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若F1PQ=60,|PF1|=|PQ|,则椭圆的离心率为( )ABCD二、填空题13在ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1若C=,则=14在下列给出的命题中,所有正确命题的序号为 函数y=2x3+3x1的图象关于点(0,1)成中心对称;对x,yR若x+y0,则x1或y1;若实数x,y满足x2+y2=1,则的最大值为;若ABC为锐角三角形,则sinAcosB在ABC中,BC=5,G,O分别为ABC的重心和外心,且=5,则ABC的形状是直角三角形15过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是16等比数列an的前n项和为Sn,已知S3=a1+3a2,则公比q=1717已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称18对于函数,“的图象关于y轴对称”是“”的 条件 (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)三、解答题19如图,在三棱锥ABCD中,AB平面BCD,BCCD,E,F,G分别是AC,AD,BC的中点求证:(I)AB平面EFG;(II)平面EFG平面ABC20(本题满分13分)已知圆的圆心在坐标原点,且与直线:相切,设点为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线.(1)求曲线的方程;(2)若动直线:与曲线有且仅有一个公共点,过,两点分别作,垂足分别为,且记为点到直线的距离,为点到直线的距离,为点到点的距离,试探索是否存在最值?若存在,请求出最值.21已知二次函数f(x)的图象过点(0,4),对任意x满足f(3x)=f(x),且有最小值是(1)求f(x)的解析式;(2)求函数h(x)=f(x)(2t3)x在区间0,1上的最小值,其中tR;(3)在区间1,3上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围22如图,在ABC中,BC边上的中线AD长为3,且sinB=,cosADC=()求sinBAD的值;()求AC边的长23已知a,b,c分别是ABC内角A,B,C的对边,sin2B=2sinAsinC()若a=b,求cosB;()设B=90,且a=,求ABC的面积24如图,已知边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点()试在棱AD上找一点N,使得CN平面AMP,并证明你的结论()证明:AMPM古塔区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h=3故V=2故选C2 【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:定义域相同,对应法则相同。选项A中两个函数定义域不同,选项B中两个函数对应法则不同,选项D中两个函数定义域不同。故选C。考点:同一函数的判定。3 【答案】B【解析】解:向量,向量与平行,可得2m=1解得m=故选:B4 【答案】D【解析】解:A=(,1),B=(,2)(0,+),AB=(,2)(0,1),故选:D【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键5 【答案】D【解析】解:函数f(x)=lg(1x)在(,1)上递减,由于函数的值域为(,1,则lg(1x)1,则有01x10,解得,9x1则定义域为9,1),故选D【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题6 【答案】D【解析】解:A=x|2x4=x|x2,由x10得x1B=x|y=lg(x1)=x|x1AB=x|1x2故选D7 【答案】B【解析】解:(h(x)=xxxlnx+x(lnx)=xx(lnx+1),令h(x)0,解得:x,令h(x)0,解得:0x,h(x)在(0,)递减,在(,+)递增,h()最小,故选:B【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查8 【答案】D【解析】解:f(1)=lg1=0,当x0时,函数f(x)没有零点,故2x+a0或2x+a0在(,0上恒成立,即a2x,或a2x在(,0上恒成立,故a1或a0;故选D【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题9 【答案】D【解析】解:对于A:f(x)=|x1|,g(x)=x1,表达式不同,不是相同函数;对于B:f(x)的定义域是:x|x1或x1,g(x)的定义域是xx1,定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是x|x0,定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是x|x1,是相同函数;故选:D【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题10【答案】D【解析】解:正ABC的边长为a,正ABC的高为,画到平面直观图ABC后,“高”变成原来的一半,且与底面夹角45度,ABC的高为=,ABC的面积S=故选D【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化11【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2故答案为:C12【答案】 D【解析】解:设|PF1|=t,|PF1|=|PQ|,F1PQ=60,|PQ|=t,|F1Q|=t,由F1PQ为等边三角形,得|F1P|=|F1Q|,由对称性可知,PQ垂直于x轴,F2为PQ的中点,|PF2|=,|F1F2|=,即2c=,由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,椭圆的离心率为:e=故选D二、填空题13【答案】= 【解析】解:在ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1,sinAsinB+sinBsinC=2sin2B再由正弦定理可得 ab+bc=2b2,即 a+c=2b,故a,b,c成等差数列C=,由a,b,c成等差数列可得c=2ba,由余弦定理可得 (2ba)2=a2+b22abcosC=a2+b2+ab化简可得 5ab=3b2, =故答案为:【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题14【答案】 :【解析】解:对于函数y=2x33x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于点(0,1)的对称点为(x0,2y0)也满足函数的解析式,则正确;对于对x,yR,若x+y0,对应的是直线y=x以外的点,则x1,或y1,正确;对于若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(2,0)连线的斜率,其最大值为,正确;对于若ABC为锐角三角形,则A,B,AB都是锐角,即AB,即A+B,BA,则cosBcos(A),即cosBsinA,故不正确对于在ABC中,G,O分别为ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则ODBC,GD=AD,=|,由则,即则又BC=5则有由余弦定理可得cosC0,即有C为钝角则三角形ABC为钝角三角形;不正确故答案为:15【答案】 【解析】解:抛物线C方程为y2=4x,可得它的焦点为F(1,0),设直线l方程为y=k(x1),由,消去x得设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=4|AF|=3|BF|,y1+3y2=0,可得y1=3y2,代入得2y2=,且3y22=4,消去y2得k2=3,解之得k=故答案为:【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题16【答案】2 【解析】解:设等比数列的公比为q,由S3=a1+3a2,当q=1时,上式显然不成立;当q1时,得,即q23q+2=0,解得:q=2故答案为:2【点评】本题考查了等比数列的前n项和,考查了等比数列的通项公式,是基础的计算题17【答案】 【解析】解:f(x)=axg(x)(a0且a1),=ax,又f(x)g(x)f(x)g(x),()=0,=ax是增函数,a1,+=a1+a1=,解得a=或a=2综上得a=2数列为2n数列的前n项和大于62,2+22+23+2n=2n+1262,即2n+164=26,n+16,解得n5n的最小值为6故答案为:6【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题18【答案】必要而不充分【解析】试题分析:充分性不成立,如图象关于y轴对称,但不是奇函数;必要性成立,所以的图象关于y轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法1.定义法:直接判断“若p则q”、“若q则p”的真假并注意和图示相结合,例如“pq”为真,则p是q的充分条件2.等价法:利用pq与非q非p,qp与非p非q,pq与非q非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法3.集合法:若AB,则A是B的充分条件或B是A的必要条件;若AB,则A是B的充要条件三、解答题19【答案】 【解析】证明:(I)在三棱锥ABCD中,E,G分别是AC,BC的中点所以ABEG因为EG平面EFG,AB平面EFG所以AB平面EFG(II)因为AB平面BCD,CD平面BCD所以ABCD又BCCD且ABBC=B所以CD平面ABC又E,F分别是AC,AD,的中点所以CDEF所以EF平面ABC又EF平面EFG,所以平面平面EFG平面ABC【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键20【答案】【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.(2)由(1)中知曲线是椭圆,将直线:代入椭圆的方程中,得由直线与椭圆有且仅有一个公共点知,整理得 7分且,当时,设直线的倾斜角为,则,即 10分 当时,11分当时,四边形为矩形,此时, 12分综上、可知,存在最大值,最大值为 13分21【答案】 【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a0设f(x)=a(x)2+将点(0,4)代入得:f(0)=,解得:a=1f(x)=(x)2+=x23x+4(2)h(x)=f(x)(2t3)x=x22tx+4=(xt)2+4t2,x0,1当对称轴x=t0时,h(x)在x=0处取得最小值h(0)=4; 当对称轴0x=t1时,h(x)在x=t处取得最小值h(t)=4t2; 当对称轴x=t1时,h(x)在x=1处取得最小值h(1)=12t+4=2t+5综上所述:当t0时,最小值4;当0t1时,最小值4t2;当t1时,最小值2t+5(3)由已知:f(x)2x+m对于x1,3恒成立,mx25x+4对x1,3恒成立,g(x)=x25x+4在x1,3上的最小值为,m22【答案】 【解析】解:()由题意,因为sinB=,所以cosB=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论