




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 0 0 8 年 全 国 普 通 高 等 学 校 招 生 统 一 考 试上海 数学试卷(理工农医类) 考生注意: 1. 答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚. 2. 本试卷共有21道试题,满分150分考试时间120分钟. 请考生用钢笔或圆珠笔将答案直接写在试卷上. 得 分评 卷 人一. 填空题(本大题满分44分)本大题共有11题,只要求直接 填写结果,每个空格填对得4分,否则一律得零分1不等式的解集是 .2若集合、满足,则实数=_.3若复数满足(是虚数单位),则=_.4若函数的反函数为(),则 .5若向量、满足,且与的夹角为,则=_.6函数的最大值是 .7在平面直角坐标系中,从六个点:、 中任取三个,这三点能构成三角形的概率是 (结果用分数表示).8设函数是定义在上的奇函数. 若当时,则满足的的取值范围是 .9已知总体的各个体的值由小到大依次为2,3,3,7,12,13.7,18.3,20,且 总体的中位数为. 若要使该总体的方差最小,则的取值分别是 .10某海域内有一孤岛. 岛四周的海平面(视为平面)上有一浅水区(含边界),其边界 是长轴长为、短轴长为的椭圆. 已知岛上甲、乙导航灯的海拔高度分别为 ,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上. 现有船只经过该海 域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为,那么 船只已进入该浅水区的判别条件是 .11方程的解可视为函数的图像与函数的图像交点的横坐标. 若方程的各个实根所对应的点()(=)均在直线的同侧,则实数的取值范围是 . 得 分评 卷 人二. 选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分12. 组合数恒等于 答 ( ) (A) . (B) . (C) . (D) .13. 给定空间中的直线及平面. 条件“直线与平面内无数条直线都垂直”是“直线与平面垂直”的 答 ( ) (A) 充要条件. (B) 充分非必要条件. (C) 必要非充分条件. (D) 既非充分又非必要条件.14. 若数列是首项为1,公比为的无穷等比数列,且各项的和为,则 的值是 答 ( ) (A) 1. (B) 2. (C) . (D) .15. 如图,在平面直角坐标系中,是一个与轴的正半轴、轴的正半轴分别相切于点、的定圆所围成的区域(含边界),是该 圆的四等分点. 若点、点满足且, 则称优于. 如果中的点满足:不存在中的其它点优 于,那么所有这样的点组成的集合是劣弧 答 ( )(A) . (B) . (C) . (D) .三. 解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤 得 分评 卷 人16.(本题满分12分) 如图,在棱长为 2 的正方体中,的中点. 求直线与平面所成角的大小(结果用反三角函数值表示). 解 得 分评 卷 人17.(本题满分13分)如图,某住宅小区的平面图呈圆心角为的扇形. 小区的两个出入口设置在点及点处,且小区里有一条平行于的小路. 已知某人从沿走到用了10分钟,从沿走到用了6分钟. 若此人步行的速度为每分钟50米,求该扇形的半径的长(精确到1米). 解 得 分评 卷 人18.(本题满分15分)本题共有2个小题,第1小题满分6分,第 2小题满分9分 已知双曲线,是上的任意点. (1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数; (2)设点的坐标为,求的最小值.证明(1) 解(2) 得 分评 卷 人19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2 小题满分8分 已知函数. (1)若,求的值; (2)若对于恒成立,求实数的取值范围. 解(1) (2) 得 分评 卷 人20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2 小题满分5分,第3小题满分8分 设是平面直角坐标系中的点,是经过原点与点的直线.记是直线与抛物线的异于原点的交点 (1)已知. 求点的坐标; (2)已知点在椭圆上,. 求证:点落在双曲线上; (3)已知动点满足,. 若点始终落在一条关于轴对称的抛物线上,试问动点的轨迹落在哪种二次曲线上,并说明理由. 解(1) 证明(2) 解(3) 得 分评 卷 人21.(本题满分18分)本题共有3个小题,第1小题满分3分,第 2小题满分7分,第3小题满分8分 已知以为首项的数列满足: (1)当,时,求数列的通项公式; (2)当,时,试用表示数列前100项的和; (3)当 (是正整数),正整数时,求证:数列,,成等比数列当且仅当. 解(1)(2)证明(3)2 0 0 8 年 全 国 普 通 高 等 学 校 招 生 统 一 考 试上海数学试卷(理工农医类)答案要点及评分标准说明1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分解答一、(第1题至第11题)1. 2. . 3. . 4. . 5. .6. 2. 7. . 8. . 9. .10. . 11. . 二、(第12题至第15题)题 号12131415代 号DC BD三、(第16题至第21题)16解 过作,交于,连接. , 是直线与平面所成的角. 4分 由题意,得. , . 8分 , . 10分 故直线与平面所成角的大小是. 12分17. 解法一 设该扇形的半径为米. 连接. 2分由题意,得=500(米),=300(米),. 4分在中, 6分即, 9分解得(米). 答:该扇形的半径的长约为445米. 13分解法二 连接,作,交于. 2分 由题意,得=500(米),=300(米),. 4分 在中, (米), 6分 . 9分 在直角中,(米), (米). 答:该扇形的半径的长约为445米. 13分18. 解 (1)设是双曲线上任意一点, 该双曲线的两条渐近线方程分别是和. 2分 点到两条渐近线的距离分别是和, 4分 它们的乘积是. 点到双曲线的两条渐近线的距离的乘积是一个常数. 6分 (2)设的坐标为,则 8分 . 11分, 13分 当时,的最小值为, 即的最小值为. 15分19. 解 (1)当时,;当时,. 2分 由条件可知 ,即 ,解得 . 6分,. 8分 (2)当时, 10分即 ., . 13分, 故的取值范围是. 16分20. 解(1)当时, 解方程组 得 即点的坐标为. 3分 证明(2)由方程组 得 即点的坐标为. 5分 是椭圆上的点,即 , . 因此点落在双曲线上. 8分 (3)设所在抛物线的方程为 ,. 10分 将代入方程,得 ,即. 12分当时,此时点的轨迹落在抛物线上;当时,此时点的轨迹落在圆上; 当且时,此时点的轨迹落在椭圆上;当时,此时点的轨迹落在双曲线上. 16分21. 解(1)由题意得 . 3分 (2)当时, , 6分 . 10分 (3)当时,; ,; ,; ,. ,. 综上所述,当时,数列,是公比为的等比数列. 13分 当时, , , . 15分由于,故数列,不是等比数列. 所以,数列,成等比数列当且仅当. 18分1.不等式的解集是 .【答案】【解析】由. 2.若集合Ax|x2、Bx|xa满足AB2,则实数a .【答案】【解析】由.3.若复数z满足zi(2-z)(i是虚数单位),则z .【答案】【解析】由.4.若函数f(x)的反函数为f 1(x)x2(x0),则f(4) .【答案】【解析】令.5.若向量、满足|1,|2,且与的夹角为,则|+| .【答案】【解析】.6.函数f(x)sin x +sin(+x)的最大值是 .【答案】【解析】由.7.在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示).【答案】【解析】已知六个无共线的点生成三角形总数为:;可构成三角形的个数为:,所以所求概率为:;8.设函数f(x)是定义在R上的奇函数,若当x(0,+)时,f(x)lg x,则满足f(x)0的x的取值范围是 .【答案】【解析】由f(x)为奇函数得:9.已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a、b的取值分别是 .【答案】【解析】根据总体方差的定义知,只需且必须时,总体方差最小;10.某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为1、2,那么船只已进入该浅水区的判别条件是 .【答案】【解析】依题意, ;11.方程x2+x10的解可视为函数yx+的图像与函数y的图像交点的横坐标,若x4+ax40的各个实根x1,x2,xk (k4)所对应的点(xi ,)(i1,2,k)均在直线yx的同侧,则实数a的取值范围是 .【答案】【解析】方程的根显然,原方程等价于,原方程的实根是曲线与曲线的交点的横坐标;而曲线是由曲线向上或向下平移个单位而得到的。若交点(xi ,)(i1,2,k)均在直线yx的同侧,因直线yx与交点为:;所以结合图象可得:;12.组合数C(nr1,n、rZ)恒等于( ) AC B(n+1)(r+1)C Cnr C DC【答案】【解析】由. 13. 给定空间中的直线l及平面a,条件“直线l与平面a内无数条直线都垂直”是“直线l与平面a垂直”的( )条件A充要 B充分非必要 C必要非充分 D既非充分又非必要【答案】【解析】直线与平面a内的无数条平行直线垂直,但该直线未必与平面a垂直,即充分性不成立; 14. 若数列an是首项为1,公比为a的无穷等比数列,且an各项的和为a,则a的值是( )A1 B2 C D【答案】【解析】由. 15.如图,在平面直角坐标系中,是一个与x轴的正半轴、y轴的正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物●海南卷丨2024年海南省普通高中学业水平选择性考试生物试卷及答案
- 统编版语文三下( 第三单元重难点梳理)复习课件
- 宁夏青铜峡市宁朔县中2022-2023学年高二下学期期末考试化学试题(含答案)
- 汽车传感器与检测技术电子教案:轮速传感器
- 售电公司客户管理制度
- 白玉兰小区方案86p
- 商贸公司门店管理制度
- 从化溪头破冰活动方案
- 仓库低价活动策划方案
- 仙湖团建活动方案
- DB51-T 3041-2023佯黄竹丰产栽培技术规程
- GB/T 3091-2015低压流体输送用焊接钢管
- GB/T 17530.5-1998工业丙烯酸及酯中阻聚剂的测定
- 广东省东莞市《财务会计知识》事业单位国考真题
- 前道设备简介及设计方法
- 交通指挥疏导技战术培训课件交警培训专用
- 公司业务提成方案
- 图解通信施工安全隐患
- 实际控制人股东会决议
- 投入的主要施工机械计划
- 《新闻采访写作》课程思政优秀教学案例(一等奖)
评论
0/150
提交评论