




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷大同区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知平面=l,m是内不同于l的直线,那么下列命题中错误 的是()A若m,则mlB若ml,则mC若m,则mlD若ml,则m2 一个几何体的三视图如图所示,则该几何体的体积为( )ABCD3 双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.14 =( )AiBiC1+iD1i5 函数f(x)=x22ax,x1,+)是增函数,则实数a的取值范围是( )ARB1,+)C(,1D2,+)6 某程序框图如图所示,该程序运行后输出的S的值是( )A3BCD27 sin45sin105+sin45sin15=( )A0BCD18 设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A1 B2 C4 D69 若数列an的通项公式an=5()2n24()n1(nN*),an的最大项为第p项,最小项为第q项,则qp等于( )A1B2C3D410如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A30B50C75D15011若,则等于( )ABCD12设函数,若对任意,都存在,使得,则实数的最大值为( )A B C. D4二、填空题13设i是虚数单位,是复数z的共轭复数,若复数z=3i,则z=14,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,若的内切圆半径与外接圆半径之比为,则该双曲线的离心率为_.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力15若函数f(x),g(x)满足:x(0,+),均有f(x)x,g(x)x成立,则称“f(x)与g(x)关于y=x分离”已知函数f(x)=ax与g(x)=logax(a0,且a1)关于y=x分离,则a的取值范围是16已知变量x,y,满足,则z=log4(2x+y+4)的最大值为 17已知直线l的参数方程是(t为参数),曲线C的极坐标方程是=8cos+6sin,则曲线C上到直线l的距离为4的点个数有个18某种产品的加工需要 A,B,C,D,E五道工艺,其中 A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有种(用数字作答)三、解答题19(本小题满分12分)已知函数.(1)若函数在定义域上是单调增函数,求的最小值;(2)若方程在区间上有两个不同的实根,求的取值范围.20全集U=R,若集合A=x|3x10,B=x|2x7,(1)求AB,(UA)(UB); (2)若集合C=x|xa,AC,求a的取值范围21如图,在ABC中,BC边上的中线AD长为3,且sinB=,cosADC=()求sinBAD的值;()求AC边的长22如图,矩形ABCD和梯形BEFC所在平面互相垂直,BECF,BCCF,EF=2,BE=3,CF=4()求证:EF平面DCE;()当AB的长为何值时,二面角AEFC的大小为6023ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a()求;()若c2=b2+a2,求B24为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:()求任选2人中,恰有1人一周课外阅读时间在2,4)(单位:小时)的概率()专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围大同区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】【分析】由题设条件,平面=l,m是内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D2 【答案】 B【解析】解:三视图复原的几何体是一个半圆锥和圆柱的组合体,它们的底面直径均为2,故底面半径为1,圆柱的高为1,半圆锥的高为2,故圆柱的体积为:121=,半圆锥的体积为:=,故该几何体的体积V=+=,故选:B3 【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.4 【答案】 B【解析】解: =i故选:B【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力5 【答案】C【解析】解:由于f(x)=x22ax的对称轴是直线x=a,图象开口向上,故函数在区间(,a为减函数,在区间a,+)上为增函数,又由函数f(x)=x22ax,x1,+)是增函数,则a1故答案为:C6 【答案】 B【解析】解:由程序框图得:第一次运行S=3,i=2;第二次运行S=,i=3;第三次运行S=,i=4;第四次运行S=2,i=5;第五次运行S=3,i=6,S的值是成周期变化的,且周期为4,当i=2015时,程序运行了2014次,2014=4503+2,输出S=故选:B【点评】本题考查了循环结构的程序框图,根据程序的运行功能判断输出S值的周期性变化规律是关键7 【答案】C【解析】解:sin45sin105+sin45sin15=cos45cos15+sin45sin15=cos(4515)=cos30=故选:C【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题8 【答案】B【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,解得,由题意得,解得或,因为是递增的等差数列,所以,故选B考点:等差数列的性质9 【答案】A【解析】解:设=t(0,1,an=5()2n24()n1(nN*),an=5t24t=,an,当且仅当n=1时,t=1,此时an取得最大值;同理n=2时,an取得最小值qp=21=1,故选:A【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题10【答案】B【解析】解:该几何体是四棱锥,其底面面积S=56=30,高h=5,则其体积V=Sh=305=50故选B11【答案】B【解析】解:,(1,2)=m(1,1)+n(1,1)=(m+n,mn)m+n=1,mn=2,m=,n=,故选B【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等12【答案】A111.Com【解析】试题分析:设的值域为,因为函数在上的值域为,所以,因此至少要取遍中的每一个数,又,于是,实数需要满足或,解得考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。首先求出,再利用转化思想将命题条件转化为,进而转化为至少要取遍中的每一个数,再利用数形结合思想建立不等式组:或,从而解得二、填空题13【答案】10 【解析】解:由z=3i,得z=故答案为:10【点评】本题考查公式,考查了复数模的求法,是基础题14【答案】【解析】15【答案】(,+) 【解析】解:由题意,a1故问题等价于axx(a1)在区间(0,+)上恒成立构造函数f(x)=axx,则f(x)=axlna1,由f(x)=0,得x=loga(logae),xloga(logae)时,f(x)0,f(x)递增;0xloga(logae),f(x)0,f(x)递减则x=loga(logae)时,函数f(x)取到最小值,故有loga(logae)0,解得a故答案为:(,+)【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围16【答案】【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,z=log4(2x+y+4)最大是,故答案为:【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题17【答案】2 【解析】解:由,消去t得:2xy+5=0,由=8cos+6sin,得2=8cos+6sin,即x2+y2=8x+6y,化为标准式得(x4)2+(y3)2=25,即C是以(4,3)为圆心,5为半径的圆又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题18【答案】24 【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有482=24种,故答案为:24【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础三、解答题19【答案】(1);(2).1111【解析】则对恒成立,即对恒成立,而当时,.若函数在上递减,则对恒成立,即对恒成立,这是不可能的.综上,.的最小值为1. 1(2)由,得,即,令,得的根为1,考点:1、利用导数研究函数的单调性;2、函数零点问题及不等式恒成立问题.【方法点晴】本题主要考查利用导数研究函数的单调性、函数零点问题及不等式恒成立问题,属于难题不等式恒成立问题常见方法:分离参数恒成立(即可)或恒成(即可);数形结合;讨论最值或恒成立;讨论参数.本题(2)就是先将问题转化为不等式恒成立问题后再利用求得的最小值的.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.20【答案】 【解析】解:(1)A=x|3x10,B=x|2x7,AB=3,7;AB=(2,10);(CUA)(CUB)=(,3)10,+);(2)集合C=x|xa,若AC,则a3,即a的取值范围是a|a321【答案】 【解析】解:()由题意,因为sinB=,所以cosB=又cosADC=,所以sinADC=所以sinBAD=sin(ADCB)=()=()在ABD中,由正弦定理,得,解得BD=故BC=15,从而在ADC中,由余弦定理,得AC2=9+2252315()=,所以AC=【点评】本题考查差角的正弦公式,考查正弦定理、余弦定理的运用,属于中档题22【答案】 【解析】证明:()在BCE中,BCCF,BC=AD=,BE=3,EC=,在FCE中,CF2=EF2+CE2,EFCE由已知条件知,DC平面EFCB,DCEF,又DC与EC相交于C,EF平面DCE解:()方法一:过点B作BHEF交FE的延长线于H,连接AH由平面ABCD平面BEFC,平面ABCD平面BEFC=BC,ABBC,得AB平面BEFC,从而AHEF所以AHB为二面角AEFC的平面角在RtCEF中,因为EF=2,CF=4EC=CEF=90,由CEBH,得BHE=90,又在RtBHE中,BE=3,由二面角AEFC的平面角AHB=60,在RtAHB中,解得,所以当时,二面角AEFC的大小为60方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系Cxyz设AB=a(a0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0)从而,设平面AEF的法向量为,由得,取x=1,则,即,不妨设平面EFCB的法向量为,由条件,得解得所以当时,二面角AEFC的大小为60【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题23【答案】 【解析】解:()由正弦定理得,sin2AsinB+sinBcos2A=sinA,即sinB(sin2A+cos2A)=sinAsinB=sinA, =()由余弦定理和C2=b2+a2,得cosB=由()知b2=2a2,故c2=(2+)a2,可得cos2B=,又cosB0,故cosB=所以B=45【点评】本题主要考查了正弦定理和余弦定理的应用解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化24【答案】 【解析】解:()一周课外阅读时间在0,2)的学生人数为0.0102100=2人,一周课外阅读时间在2,4)的学生人数为0.0152100=3人,记一周课外阅读时间在0,2)的学生为A,B,一周课外阅读时间在2,4)的学生为C,D,E,从5人中选取2人,得到基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10个基本事件,记“任选2人中,恰有1人一周课外阅读时间在2,4)”为事件M,其中事件M包含AC,AD,AE,BD,BC,BE,共有6个基本事件,所以P(M)=,即恰有1人一周课外阅读时间在2,4)的概率为()以该校80%的学生都达到的一周课外阅读时间为t0,即一周课外阅读时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 退休财务创新创业项目商业计划书
- 网红IP授权合作流程标准化创新创业项目商业计划书
- 民宿直播展示创新创业项目商业计划书
- 网红电商供应链金融风控平台创新创业项目商业计划书
- 汽车VR定制内饰体验创新创业项目商业计划书
- 智能电网用户互动平台创新创业项目商业计划书
- 2025年纺织服装制造业智能化生产设备投资回报率研究报告
- 2025年矿山无人化作业技术装备创新与产业发展报告
- 2025年电商直播中主播品牌合作模式创新案例研究及风险控制策略报告
- 2025年老年健康管理长期照护服务模式创新实践分析报告
- SL+258-2017水库大坝安全评价导则
- 全国计算机等级考试二级Python复习备考题库(含答案)
- 食品仓储库房温湿度控制
- 部编小学语文四年级上册第8单元省级获奖大单元作业设计
- 环保配套设施技术改造项目可行性研究报告
- 大学试题(财经商贸)-博弈论笔试(2018-2023年)真题摘选含答案
- 铜矿开采设备介绍
- 血液透析机常见故障处理护理课件
- 16学时《中医药膳学》教学大纲(可编辑修改文本版)
- 崧舟细讲文本:小学语文教材文本解读与教学设计
- 医疗质量控制中心管理办法
评论
0/150
提交评论