




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷临沧市第三中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若方程C:x2+=1(a是常数)则下列结论正确的是( )AaR+,方程C表示椭圆BaR,方程C表示双曲线CaR,方程C表示椭圆DaR,方程C表示抛物线2 一个几何体的三视图如图所示,则该几何体的体积是( ) A64 B72 C80 D112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.3 为了得到函数y=sin3x的图象,可以将函数y=sin(3x+)的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位4 若命题p:x0R,sinx0=1;命题q:xR,x2+10,则下列结论正确的是( )Ap为假命题Bq为假命题Cpq为假命题Dpq真命题5 已知等差数列an的前n项和为Sn,若m1,且am1+am+1am2=0,S2m1=38,则m等于( )A38B20C10D96 棱长为的正方体的8个顶点都在球的表面上,则球的表面积为( )A B C D7 已知点A(0,1),B(2,3)C(1,2),D(1,5),则向量在方向上的投影为( )ABCD8 已知全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,则集合0,1可以表示为( )AMNB(UM)NCM(UN)D(UM)(UN)9 如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则几何体的体积为( )A. B. C. 1 D. 【命题意图】本题考查空间几何体的三视图,几何体的体积等基础知识,意在考查学生空间想象能力和计算能力10设偶函数f(x)满足f(x)=2x4(x0),则x|f(x2)0=( )Ax|x2或x4Bx|x0或x4Cx|x0或x6Dx|0x4 11双曲线上一点P到左焦点的距离为5,则点P到右焦点的距离为( )A13B15C12D1112已知直线 平面,直线平面,则( ) A B与异面 C与相交 D与无公共点二、填空题13(若集合A2,3,7,且A中至多有1个奇数,则这样的集合共有个14已知,则函数的解析式为_.15设抛物线的焦点为,两点在抛物线上,且,三点共线,过的中点作轴的垂线与抛物线在第一象限内交于点,若,则点的横坐标为 .16在极坐标系中,直线l的方程为cos=5,则点(4,)到直线l的距离为17分别在区间、上任意选取一个实数,则随机事件“”的概率为_.18为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()ta(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室 三、解答题19斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长20(本小题满分12分)如图,四棱锥中,底面是边长为的菱形,且,侧面为等边三角形,且与底面垂直,为的中点()求证:;()求直线与平面所成角的正弦值21已知等差数列满足:=2,且,成等比数列。(1) 求数列的通项公式。(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.22已知函数f(x)=|xa|()若不等式f(x)2的解集为0,4,求实数a的值;()在()的条件下,若x0R,使得f(x0)+f(x0+5)m24m,求实数m的取值范围23已知命题p:x2,4,x22x2a0恒成立,命题q:f(x)=x2ax+1在区间上是增函数若pq为真命题,pq为假命题,求实数a的取值范围24命题p:关于x的不等式x2+2ax+40对一切xR恒成立,q:函数f(x)=(32a)x是增函数若pq为真,pq为假求实数a的取值范围临沧市第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 B【解析】解:当a=1时,方程C:即x2+y2=1,表示单位圆aR+,使方程C不表示椭圆故A项不正确;当a0时,方程C:表示焦点在x轴上的双曲线aR,方程C表示双曲线,得B项正确;aR,方程C不表示椭圆,得C项不正确不论a取何值,方程C:中没有一次项aR,方程C不能表示抛物线,故D项不正确综上所述,可得B为正确答案故选:B2 【答案】C.【解析】3 【答案】A【解析】解:由于函数y=sin(3x+)=sin3(x+)的图象向右平移个单位,即可得到y=sin3(x+)= sin3x的图象,故选:A【点评】本题主要考查函数y=Asin(x+)的图象平移变换,属于中档题4 【答案】A【解析】解:时,sinx0=1;x0R,sinx0=1;命题p是真命题;由x2+10得x21,显然不成立;命题q是假命题;p为假命题,q为真命题,pq为真命题,pq为假命题;A正确故选A【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对R满足x20,命题p,pq,pq的真假和命题p,q真假的关系5 【答案】C【解析】解:根据等差数列的性质可得:am1+am+1=2am,则am1+am+1am2=am(2am)=0,解得:am=0或am=2,若am等于0,显然S2m1=(2m1)am=38不成立,故有am=2,S2m1=(2m1)am=4m2=38,解得m=10故选C6 【答案】【解析】考点:球与几何体7 【答案】D【解析】解:;在方向上的投影为=故选D【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算8 【答案】B【解析】解:全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,UM=0,1,N(UM)=0,1,故选:B【点评】本题主要考查集合的子交并补运算,属于基础题9 【答案】D【解析】10【答案】D【解析】解:偶函数f(x)=2x4(x0),故它的图象关于y轴对称,且图象经过点(2,0)、(0,3),(2,0),故f(x2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x2)的图象经过点(0,0)、(2,3),(4,0),则由f(x2)0,可得 0x4,故选:D【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题11【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,双曲线上一点P到左焦点的距离为5,|x5|=24x0,x=13故选A12【答案】D【解析】试题分析:因为直线 平面,直线平面,所以或与异面,故选D.考点:平面的基本性质及推论.二、填空题13【答案】6 【解析】解:集合A为2,3,7的真子集有7个,奇数3、7都包含的有3,7,则符合条件的有71=6个故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查14【答案】【解析】试题分析:由题意得,令,则,则,所以函数的解析式为.考点:函数的解析式.15【答案】2 【解析】由题意,得,准线为,设、,直线的方程为,代入抛物线方程消去,得,所以,又设,则,所以,所以因为,解得,所以点的横坐标为216【答案】3 【解析】解:直线l的方程为cos=5,化为x=5点(4,)化为点到直线l的距离d=52=3故答案为:3【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题17【答案】【解析】解析: 由得,如图所有实数对表示的区域的面积为,满足条件“”的实数对表示的区域为图中阴影部分,其面积为,随机事件“”的概率为18【答案】0.6【解析】解:当t0.1时,可得1=()0.1a0.1a=0a=0.1由题意可得y0.25=,即()t0.1,即t0.1解得t0.6,由题意至少需要经过0.6小时后,学生才能回到教室故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力易错点:只单纯解不等式,而忽略题意,得到其他错误答案三、解答题19【答案】 【解析】解:设直线l的倾斜解为,则l与y轴的夹角=90,cot=tan=2,sin=,|AB|=40线段AB的长为40【点评】本题考查抛物线的焦点弦的求法,解题时要注意公式|AB|=的灵活运用20【答案】 【解析】由底面为菱形且,是等边三角形,取中点,有, 为二面角的平面角, 分别以所在直线为轴,建立空间直角坐标系如图, 则 3分()由为中点, 6分()由, 平面的法向量可取 9分, 设直线与平面所成角为,则 即直线与平面所成角的正弦值为 12分21【答案】见解析。【解析】(1)设数列an的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d),化简得d24d=0,解得d=0或4,当d=0时,an=2,当d=4时,an=2+(n1)4=4n2。(2)当an=2时,Sn=2n,显然2n60n+800,此时不存在正整数n,使得Sn60n+800成立,当an=4n2时,Sn=2n2,令2n260n+800,即n230n4000,解得n40,或n10(舍去),此时存在正整数n,使得Sn60n+800成立,n的最小值为41,综上,当an=2时,不存在满足题意的正整数n,当an=4n2时,存在满足题意的正整数n,最小值为4122【答案】 【解析】解:()|xa|2,a2xa+2,f(x)2的解集为0,4,a=2()f(x)+f(x+5)=|x2|+|x+3|(x2)(x+3)|=5,x0R,使得,即成立,4m+m2f(x)+f(x+5)min,即4m+m25,解得m5,或m1,实数m的取值范围是(,5)(1,+)23【答案】 【解析】解:x2,4,x22x2a0恒成立,等价于ax2x在x2,4恒成立,而函数g(x)=x2x在x2,4递增,其最大值是g(4)=4,a4,若p为真命题,则a4;f(x)=x2ax+1在区间上是增函数,对称轴x=,a1,若q为真命题,则a1;由题意知p、q一真一假,当p真q假时,a4;当p假q真时,a1,所以a的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (2025)职业病危害及预防措施试题及答案
- 博物馆陈列设计
- 盖梁抱箍施工方案
- 消防春晚活动方案策划
- 工厂电器培训知识课件
- 红色六一活动方案策划
- 动物立体浮雕课件
- 关于grg施工方案
- 关于nalc板施工方案
- 品酒会活动策划方案
- 国际结算-苏宗祥主编
- 八年级地理上册【省份轮廓图】汇总考试题
- 【社会层面】社会主义核心价值观
- 变更风险识别、评估记录表参考模板范本
- 2022年基本公共卫生服务项目宣传工作计划
- 癫痫病人的护理查房ppt课件(PPT 24页)
- DB45T2053-2019 重质碳酸钙单位产品能源消耗限额
- 红金简约风教师退休欢送会PPT通用模板
- 水准点复测记录(自动计算表)
- 有机热载体锅炉安装工程施工方案完整
- 处方点评与案例分析
评论
0/150
提交评论