




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013年全国各地高考文科数学试题分类汇编7:立体几何 三、解答题(2013年高考辽宁卷(文)如图,(I)求证:(II)设(2013年高考浙江卷(文)如图,在在四棱锥P-ABCD中,PA面ABCD,AB=BC=2,AD=CD=,PA=,ABC=120,G为线段PC上的点.()证明:BD面PAC ; ()若G是PC的中点,求DG与APC所成的角的正切值;()若G满足PC面BGD,求 的值.(2013年高考陕西卷(文)如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O平面ABCD, . () 证明: A1BD / 平面CD1B1; () 求三棱柱ABD-A1B1D1的体积. (2013年高考广东卷(文)如图4,在边长为1的等边三角形中,分别是边上的点,是的中点,与交于点,将沿折起,得到如图5所示的三棱锥,其中.(1) 证明:/平面;(2) 证明:平面;(3) 当时,求三棱锥的体积.(2013年高考湖南(文)如图2.在直菱柱ABC-A1B1C1中,BAC=90,AB=AC=2,AA1=3,D是BC的中点,点E在菱BB1上运动.(I)证明:ADC1E;(II)当异面直线AC,C1E 所成的角为60时,求三棱锥C1-A2B1E的体积.(2013年高考北京卷(文)如图,在四棱锥中,平面底面,和分别是和的中点,求证:(1)底面;(2)平面;(3)平面平面 (2013年高考课标卷(文)如图,三棱柱中,.()证明:;()若,求三棱柱的体积.(2013年高考山东卷(文)如图,四棱锥中, ,分别为的中点()求证:;()求证:【答案】(2013年高考四川卷(文)如图,在三棱柱中,侧棱底面,分别是线段的中点,是线段上异于端点的点.()在平面内,试作出过点与平面平行的直线,说明理由,并证明直线平面;()设()中的直线交于点,求三棱锥的体积.(锥体体积公式:,其中为底面面积,为高)(2013年高考课标卷(文)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(1)证明: BC1/平面A1CD;(2)设AA1= AC=CB=2,AB=22,求三棱锥C一A1DE的体积.(2013年高考大纲卷(文)如图,四棱锥P-ABCD中,ABC=BAD=900,BC=2AD,PAB与PAD都是边长为2的等边三角形.(I)证明:PBCD; (II)求点A到平面PCD的距离. (2013年高考安徽(文)如图,四棱锥的底面是边长为2的菱形,.已知 .()证明:()若为的中点,求三菱锥的体积.(2013年高考天津卷(文)如图, 三棱柱ABC-A1B1C1中, 侧棱A1A底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点. () 证明EF/平面A1CD; () 证明平面A1CD平面A1ABB1; () 求直线BC与平面A1CD所成角的正弦值. 【答案】(2013年高考重庆卷(文)(本小题满分12分,()小问5分,()小问7分)如题(19)图,四棱锥中,底面, .zhangwlx()求证:平面;()若侧棱上的点满足,求三棱锥的体积.(2013年高考江西卷(文)如图,直四棱柱ABCD A1B1C1D1中,AB/CD,ADAB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3(1)证明:BE平面BB1C1C;(2)求点B1 到平面EA1C1 的距离1(2013年高考辽宁卷(文)如图,(I)求证:(II)设【答案】 2(2013年高考浙江卷(文)如图,在在四棱锥P-ABCD中,PA面ABCD,AB=BC=2,AD=CD=,PA=,ABC=120,G为线段PC上的点.()证明:BD面PAC ; ()若G是PC的中点,求DG与APC所成的角的正切值;()若G满足PC面BGD,求 的值.【答案】解:证明:()由已知得三角形是等腰三角形,且底角等于30,且,所以;、,又因为; ()设,由(1)知,连接,所以与面所成的角是,由已知及(1)知:, ,所以与面所成的角的正切值是; ()由已知得到:,因为,在中,设 3(2013年高考陕西卷(文)如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O平面ABCD, . () 证明: A1BD / 平面CD1B1; () 求三棱柱ABD-A1B1D1的体积. 【答案】解: () 设. . .(证毕) () . 在正方形AB CD中,AO = 1 . . 所以,. 4(2013年高考广东卷(文)如图4,在边长为1的等边三角形中,分别是边上的点,是的中点,与交于点,将沿折起,得到如图5所示的三棱锥,其中.(1) 证明:/平面;(2) 证明:平面;(3) 当时,求三棱锥的体积.【答案】(1)在等边三角形中, ,在折叠后的三棱锥中 也成立, ,平面, 平面,平面; (2)在等边三角形中,是的中点,所以,. 在三棱锥中, ; (3)由(1)可知,结合(2)可得. 6(2013年高考北京卷(文)如图,在四棱锥中,平面底面,和分别是和的中点,求证:(1)底面;(2)平面;(3)平面平面【答案】(I)因为平面PAD平面ABCD,且PA垂直于这个平面的交线AD 所以PA垂直底面ABCD. (II)因为ABCD,CD=2AB,E为CD的中点 所以ABDE,且AB=DE 所以ABED为平行四边形, 所以BEAD,又因为BE平面PAD,AD平面PAD 所以BE平面PAD. (III)因为ABAD,而且ABED为平行四边形 所以BECD,ADCD,由(I)知PA底面ABCD, 所以PACD,所以CD平面PAD 来源:学科网所以CDPD,因为E和F分别是CD和PC的中点 所以PDEF,所以CDEF,所以CD平面BEF,所以平面BEF平面PCD. 7.(2013年高考课标卷(文)如图,三棱柱中,.()证明:;()若,求三棱柱的体积.【答案】【答案】(I)取AB的中点O,连接、,因为CA=CB,所以,由于AB=A A1,BA A1=600,故为等边三角形,所以OAAB. 因为OCOA=O,所以AB平面OAC.又ACC平面OAC,故ABAC. (II)由题设知 10(2013年高考课标卷(文)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(1)证明: BC1/平面A1CD;(2)设AA1= AC=CB=2,AB=22,求三棱锥C一A1DE的体积.【答案】 11(2013年高考大纲卷(文)如图,四棱锥P-ABCD中,ABC=BAD=900,BC=2AD,PAB与PAD都是边长为2的等边三角形.(I)证明:PBCD; (II)求点A到平面PCD的距离. 【答案】()证明:取BC的中点E,连结DE,则ABED为正方形. 过P作PO平面ABCD,垂足为O. 连结OA,OB,OD,OE. 由和都是等边三角形知PA=PB=PD, 所以OA=OB=OD,即点O为正方形ABED对角线的交点, 故,从而. 因为O是BD的中点,E是BC的中点, 所以OE/CD.因此,. ()解:取PD的中点F,连结OF,则OF/PB. 由()知,故. 又, 故为等腰三角形,因此,. 又,所以平面PCD. 因为AE/CD,平面PCD,平面PCD,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版铁塔基站租赁与广告位合作合同范本
- 2025版桥架安装与防雷接地工程承包合同样本
- 2025年建筑材料供货与绿色建筑认证服务合同
- 2025年二手房买卖合同:针对老旧房屋改造的特别约定条款
- 2025年度高效节水农业种植技术服务合同范本
- 2025年跨境矿山资源承包与国际贸易合同
- 2025版文化旅游区建筑承包合同范本
- 2025年数字经济法律咨询项目评标保密与委托合同
- 2025版石料矿山安全生产责任协议
- 2025年度旅游行程变更免责协议及游客须知
- 七年级班主任开学第一课课件
- XXX有限公司报销审核制度
- WS/T 427-2013临床营养风险筛查
- GA/T 1047-2013道路交通信息监测记录设备设置规范
- GJB9001C内审员培训讲学课件
- 五牌一图(完整版)
- 幼儿园绘本故事:《十二生肖》 课件
- 激光跟踪仪使用手册
- 新媒体运营知识考核试题与答案
- 金属材料的主要性能ppt课件(完整版)
- 丽声北极星自然拼读绘本第二级 Fat Cat 课件
评论
0/150
提交评论