皮山县外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
皮山县外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
皮山县外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
皮山县外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
皮山县外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷皮山县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 下面的结构图,总经理的直接下属是( )A总工程师和专家办公室B开发部C总工程师、专家办公室和开发部D总工程师、专家办公室和所有七个部2 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A35BCD533 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )A B C D4 设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f(x)的图象可能是( )ABCD5 已知集合P=x|1xb,bN,Q=x|x23x0,xZ,若PQ,则b的最小值等于( )A0B1C2D36 已知直线l平面,直线m平面,有下面四个命题:(1)lm,(2)lm,(3)lm,(4)lm,其中正确命题是( )A(1)与(2)B(1)与(3)C(2)与(4)D(3)与(4)7 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1B-1C0D8 过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),若x1+x2=6,则|AB|为( )A8B10C6D49 年月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为,按分层抽样的方法,应从青年职工中抽取的人数为( )A. B. C. D.【命题意图】本题主要考查分层抽样的方法的运用,属容易题.10函数y=(x25x+6)的单调减区间为( )A(,+)B(3,+)C(,)D(,2)11设函数f(x)=的最小值为1,则实数a的取值范围是( )Aa2Ba2CaDa12复数(为虚数单位),则的共轭复数为( ) A B C D【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力二、填空题13已知函数在处取得极小值10,则的值为 14过原点的直线l与函数y=的图象交于B,C两点,A为抛物线x2=8y的焦点,则|+|=15已知是数列的前项和,若不等式对一切恒成立,则的取值范围是_【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力16设O为坐标原点,抛物线C:y2=2px(p0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,若|AF|BF|,则=17已知一个算法,其流程图如图,则输出结果是18在ABC中,若a=9,b=10,c=12,则ABC的形状是 三、解答题19(本小题满分12分)已知函数.(1)求函数在上的最大值和最小值;(2)在中,角所对的边分别为,满足,求的值.111120已知奇函数f(x)=(cR)()求c的值;()当x2,+)时,求f(x)的最小值21等差数列an 中,a1=1,前n项和Sn满足条件,()求数列an 的通项公式和Sn;()记bn=an2n1,求数列bn的前n项和Tn22现有5名男生和3名女生(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?23已知函数f(x)=ax3+bx23x在x=1处取得极值求函数f(x)的解析式24(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系已知直线的极坐标方程为,曲线的极坐标方程为(1)设为参数,若,求直线的参数方程;(2)已知直线与曲线交于,设,且,求实数的值皮山县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部读结构图的顺序是按照从上到下,从左到右的顺序故选C【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读2 【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,故选:D【点评】本题主要考查分步计数原理的应用,属于基础题3 【答案】C【解析】考点:三视图4 【答案】D【解析】解:根据函数与导数的关系:可知,当f(x)0时,函数f(x)单调递增;当f(x)0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x0时,函数f(x)单调递减,则f(x)0,排除选项A,C当x0时,函数f(x)先单调递增,则f(x)0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题5 【答案】C【解析】解:集合P=x|1xb,bN,Q=x|x23x0,xZ=1,2,PQ,可得b的最小值为:2故选:C【点评】本题考查集合的基本运算,交集的意义,是基础题6 【答案】B【解析】解:直线l平面,l平面,又直线m平面,lm,故(1)正确;直线l平面,l平面,或l平面,又直线m平面,l与m可能平行也可能相交,还可以异面,故(2)错误;直线l平面,lm,m,直线m平面,故(3)正确;直线l平面,lm,m或m,又直线m平面,则与可能平行也可能相交,故(4)错误;故选B【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键7 【答案】B【解析】由题意,可取,所以8 【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,抛物线y2=4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点|AB|=2(x1+x2),又x1+x2=6|AB|=2(x1+x2)=8故选A9 【答案】C 10【答案】B【解析】解:令t=x25x+6=(x2)(x3)0,可得 x2,或 x3,故函数y=(x25x+6)的定义域为(,2)(3,+)本题即求函数t在定义域(,2)(3,+)上的增区间结合二次函数的性质可得,函数t在(,2)(3,+)上的增区间为 (3,+),故选B11【答案】C【解析】解:当x时,f(x)=4x323=1,当x=时,取得最小值1;当x时,f(x)=x22x+a=(x1)2+a1,即有f(x)在(,)递减,则f(x)f()=a,由题意可得a1,解得a故选:C【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题12【答案】A【解析】根据复数的运算可知,可知的共轭复数为,故选A.二、填空题13【答案】考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f(x)求方程f(x)0的根列表检验f(x)在f(x)0的根的附近两侧的符号下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f(x0)0,且在该点左、右两侧的导数值符号相反.14【答案】4 【解析】解:由题意可得点B和点C关于原点对称,|+|=2|,再根据A为抛物线x2=8y的焦点,可得A(0,2),2|=4,故答案为:4【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2|是解题的关键15【答案】【解析】由,两式相减,得,所以,于是由不等式对一切恒成立,得,解得16【答案】 【解析】解:O为坐标原点,抛物线C:y2=2px(p0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,直线AB的方程为y=(x),l的方程为x=,联立,解得A(, P),B(,)直线OA的方程为:y=,联立,解得D(,)|BD|=,|OF|=, =故答案为:【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质17【答案】5 【解析】解:模拟执行程序框图,可得a=1,a=2不满足条件a24a+1,a=3不满足条件a24a+1,a=4不满足条件a24a+1,a=5满足条件a24a+1,退出循环,输出a的值为5故答案为:5【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查18【答案】锐角三角形【解析】解:c=12是最大边,角C是最大角根据余弦定理,得cosC=0C(0,),角C是锐角,由此可得A、B也是锐角,所以ABC是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题三、解答题19【答案】(1)最大值为,最小值为;(2).【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简再利用的性质可求在上的最值;(2)利用,可得,再由余弦定理可得,再据正弦定理可得.1试题解析:(2)因为,即,又在中,由余弦定理得,所以.由正弦定理得:,即,所以.考点:1.辅助角公式;2.性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.20【答案】 【解析】解:()f(x)是奇函数,f(x)=f(x),=,比较系数得:c=c,c=0,f(x)=x+;()f(x)=x+,f(x)=1,当x2,+)时,10,函数f(x)在2,+)上单调递增,f(x)min=f(2)=【点评】本题考查了函数的奇偶性问题,考查了函数的单调性、最值问题,是一道中档题21【答案】 【解析】解:()设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2a1=2,所以an=a1+(n1)d=2n1,=()由bn=an2n1,得bn=(2n1)2n1所以Tn=1+321+522+(2n1)2n1 2Tn=2+322+523+(2n3)2n1+(2n1)2n 得:Tn=1+22+222+22n1(2n1)2n=2(1+2+22+2n1)(2n1)2n1=2(2n1)2n1=2n(32n)3Tn=(2n3)2n+3【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列此方法是数列求和部分高考考查的重点及热点22【答案】 【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有 A33A66=4320种(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种【点评】本题主要考查排列与组合及两个基本原理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论