



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
抽象函数周期性的探究 厦门六中 黄东梅抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题.利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.(1) 函数y=f(x)满足f(x+a)=f(x),则f(x)是周期函数,且2a是它的一个周期.(2) 函数y=f(x)满足f(x+a)=,则f(x)是周期函数,且2a是它的一个周期.(3) 函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. 命题2:若a、b()是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期.(2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.(3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期.(4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期.命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.(1) 若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期.(2) 若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似.设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: 已知A、B C (2001年全国高考第22题第二问) f(x)是R上的偶函数f(-x)=f(x) 又f(x)关于x=a对称f(-x)=f(x+2a) f(x)=f(x+2a)f(x)是周期函数,且2a是它的一个周期 已知A、CB 定义在R上的函数f(x)是一个偶函数f(-x)=f(x) 又2a是f(x)一个周期f(x)=f(x+2a) f(-x)=f(x+2a) f(x)关于x=a对称 已知C、BA f(x)关于x=a对称f(-x)=f(x+2a) 又2a是f(x)一个周期f(x)=f(x+2a) f(-x)=f(x) f(x)是R上的偶函数 由命题3(2),我们还可以得到结论:f(x)是周期为T的奇函数,则f()=0基于上述命题阐述,可以发现,抽象函数具有某些关系.根据上述命题,我们易得函数周期,从而解决问题,以下探究上述命题在解决抽象函数问题中的运用.1.求函数值例1:f(x) 是R上的奇函数f(x)= f(x+4) ,x0,2时f(x)=x,求f(2007) 的值 解:方法一 f(x)=f(x+4) f(x+8) =f(x+4) =f(x) 8是f(x)的一个周期 f(2007)= f(2518-1)=f(-1)=f(1)=1 方法二f(x)=f(x+4),f(x)是奇函数 f(-x)=f(x+4) f(x)关于x=2对称 又f(x)是奇函数 8是f(x)的一个周期,以下与方法一相同. 例2:已知f(x)是定义在R上的函数,且满足f(x+2)1f(x)=1+f(x),f(1)=2,求f(2009) 的值 解:由条件知f(x)1,故类比命题1可知,函数f(x)的周期为8,故f(2009)= f(2518+1)=f(1)=22. 求函数解析式例3:已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当时,f(x)=2x+1,则当时求f(x)的解析式解:当时f(x)=2x+1f(x)是偶函数f(x)=f(x) f(x)=2x+1当时f(4+x)=2(4+x)+1=2x7又函数f(x)是定义在R上的偶函数,f(x)= f(4-x),类比命题3(1)知函数f(x)的周期为4故f(-4+x)=f(x) 当时求f(x)=2x73.判断函数的奇偶性例4:已知f(x)是定义在R上的函数,且满足f(x+999)=,f(999+x)=f(999x), 试判断函数f(x)的奇偶性.解:由f(x+999)=,类比命题1可知,函数f(x)的周期为1998即f(x+1998)=f(x);由f(999+x)=f(999x)知f(x)关于x=999对称,即f(x)=f(1998+x)故f(x)=f(x) f(x)是偶函数4.判断函数的单调性例5:已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当时,f(x)是减函数,求证当时f(x)为增函数解:设则 f(x)在-2,0上是减函数 又函数f(x)是定义在R上的偶函数,f(x)= f(4-x),类比命题3(1)知函数f(x)的周期为4故f(x+4)=f(x) f(-x)=f(x) 故当时f(x)为增函数 例6:f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a5,9且f(x)在5,9上单调.求a的值. 解: f(x)=-f(6-x) f(x)关于(3,0)对称 f(x)= f(2-x) f(x)关于x=1对称 根据命题2(4)得8是f(x)的一个周期 f(2000)= f(0) 又f(a) =-f(2000) f(a)=-f(0) 又f(x) =-f(6-x) f(0)=-f(6) f(a)=f(6)a5,9且f(x)在5,9上单调a =6 5. 确定方程根的个数例7:已知f(x)是定义在R上的函数,f(x)= f(4x),f(7+x)= f(7x),f(0)=0,求在区间1000,1000上f(x)=0至少有几个根? 解:依题意f(x)关于x=2,x=7对称,类比命题2(2)可知f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 质控竞聘课件
- 象棋残局杀法课件
- 2025版苗木种植与土壤改良技术研发合作合同范本
- 2025版数字货币软件测试合同范本
- 2025版售楼部装饰施工与品牌授权合同
- 2025版蔬菜种植基地承包合作合同范本
- 2025版社保业务系统开发与维护服务合同范本
- 2025年度家居建材导购员劳动合同规范
- 2025年度三个月期房地产中介短期劳动合同模板
- 2025版团购房产投资咨询服务合同
- 第一单元 第二课 传感之古今未来 教学设计2024-2025学年人教版(2024)初中信息科技八年级上册
- 电压的测量课件
- 医美知识培训课件
- 私募股权投资协议样本
- 《炼铁高炉及其生产流程》课件
- 电气火灾消防安全教育
- 四川省2024年高等职业教育单独招生考试中职类语文试题及答案
- 木屑制粒机安全操作规程
- 湖南文艺出版社小学四年级上册全册音乐教案及计划
- 社区书记文明城市创建表态发言范文(五篇)
- 检维修管理制度
评论
0/150
提交评论