高中数学 第一单元 基本初等函数(ⅱ)1_2_2 单位圆与三角函数线课件 新人教b版必修4_第1页
高中数学 第一单元 基本初等函数(ⅱ)1_2_2 单位圆与三角函数线课件 新人教b版必修4_第2页
高中数学 第一单元 基本初等函数(ⅱ)1_2_2 单位圆与三角函数线课件 新人教b版必修4_第3页
高中数学 第一单元 基本初等函数(ⅱ)1_2_2 单位圆与三角函数线课件 新人教b版必修4_第4页
高中数学 第一单元 基本初等函数(ⅱ)1_2_2 单位圆与三角函数线课件 新人教b版必修4_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.2.2 单位圆与三角函数线,第一章 1.2 任意角的三角函数,学习目标 1.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切. 2.能利用三角函数线解决一些简单的三角函数问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 单位圆,什么叫单位圆?,答案,答案 把半径为1的圆叫做单位圆.,思考2,点的射影是如何定义的?,答案 过点P作PM垂直x轴于点M,作PN垂直于y轴于点N, 则点M,N分别是点P在x轴、y轴上的正射影(简称射影).,梳理,(1)单位圆 把 的圆叫做单位圆. (2)单位圆中角的坐标 角的余弦和正弦分别等于角终边与单位圆交点的 和 .,半径为1,横坐标,纵坐标,思考1,知识点二 三角函数线,三角函数线的长度等于三角函数的值吗?,答案,答案 不等于,三角函数线的长度等于三角函数值的绝对值.,思考2,三角函数线的方向与三角函数值的正负有什么联系?,答案 当三角函数线与x轴(或y轴)正向同向时,所表示的三角函数值为正值;与x轴(或y轴)正向反向时,所表示的三角函数值为负值.,梳理,三角函数线,题型探究,类型一 三角函数线,解答,解 如图所示,,反思与感悟,(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x轴的垂线,得到垂足,从而得到正弦线和余弦线. (2)作正切线时,应从点A(1,0)引单位圆的切线交角的终边或终边的反向延长线于一点T,即可得到正切线AT.,跟踪训练1 在单位圆中画出满足sin 的角的终边,并求角的取值集合.,解答,则OP1,OP2是角的终边,,类型二 利用三角函数线比较大小,解答,反思与感悟,利用三角函数线比较三角函数值的大小时,一般分三步:(1)角的位置要“对号入座”.(2)比较三角函数线的长度.(3)确定有向线段的正负.,跟踪训练2 比较sin 1 155与sin(1 654)的大小. 解 sin 1 155sin(336075)sin 75, sin(1 654)sin(5360146)sin 146. 如图,在单位圆中,分别作出sin 75和sin 146的 正弦线M1P1,M2P2. M1P1M2P2,且符号皆正, sin 1 155sin(1 654).,解答,类型三 利用三角函数线解不等式(组),解答,命题角度1 利用三角函数线解不等式(组) 例3 在单位圆中画出适合下列条件的角的终边的范围,并由此写出角的集合.,解 作直线y 交单位圆于A,B两点, 连接OA,OB,则OA与OB围成的区域(如图(1)所示的阴影部分,包括边界), 即为角的终边的范围.,解答,解 作直线x 交单位圆于C,D两点, 连接OC与OD, 则OC与OD围成的区域(如图(2)所示的阴影部分,包括边界), 即为角的终边的范围.,反思与感悟,用单位圆中的三角函数线求解简单的三角不等式,应注意以下两点: (1)先找到“正值”区间,即02内满足条件的角的范围,然后再加上周期. (2)注意区间是开区间还是闭区间.,解答,跟踪训练3 已知 ,利用单位圆中的三角函数线,确定角的取值范围.,解 图中阴影部分就是满足条件的角的范围,,命题角度2 利用三角函数线求三角函数的定义域 例4 求下列函数的定义域.,图中阴影部分就是满足条件的角x的范围,,解答,则不等式组的解的集合如图(阴影部分)所示,,解答,反思与感悟,(1)求函数的定义域,就是求使解析式有意义的自变量的取值范围,一般通过解不等式或不等式组求得,对于三角函数的定义域问题,还要考虑三角函数自身定义域的限制. (2)要特别注意求一个固定集合与一个含有无限多段的集合的交集时,可以取特殊值把不固定的集合写成若干个固定集合再求交集.,解答,解 要使函数f(x)有意义,必须使2sin x10,,交单位圆于点P1,P2,连接OP1,OP2, 分别过点P1,P2作x轴的垂线,画出如图所示的两条正弦线,,因为sin x ,所以满足条件的角x的终边在图中阴影部分内(包括边界),,当堂训练,1.下列四个命题中: 当一定时 ,单位圆中的正弦线一定; 在单位圆中,有相同正弦线的角相等; 和有相同的正切线; 具有相同正切线的两个角的终边在同一条直线上. 则错误命题的个数是 A.0 B.1 C.2 D.3 解析 由三角函数线的定义知正确,不正确.,答案,2,3,4,5,1,解析,答案,2,3,4,5,1,2.如图在单位圆中,角的正弦线、正切线完全正确的是 A.正弦线为PM,正切线为AT B.正弦线为MP,正切线为AT C.正弦线为MP,正切线为AT D.正弦线为PM,正切线为AT,答案,解析,2,3,4,5,1,A.abc B.acb C.bca D.bac,OMMPAT, bac,故选D.,答案,2,3,4,5,1,5.利用三角函数线,在单位圆中画出满足下列条件的角的区域, 并写出角的集合:,解答,2,3,4,5,1,解答,2,3,4,5,1,解答,2,3,4,5,1,规律与方法,1.三角函数线的意义 三角函数线是用单位圆中某些特定的有向线段的长度和方向表示三角函数的值,三角函数线的长度等于三角函数值的绝对值,方向表示三角函数值的正负.具体地说,正弦线、正切线的方向同y轴一致,向上为正,向下为负;余弦线的方向同x轴一致,向右为正,向左为负.三角函数线将抽象的数用几何图形表示出来,使得问题更形象直观,为从几何途径解决问题提供了方便.,2.三角函数线的画法 定义中不仅定义了什么是正弦线、余弦线、正切线,同时也给出了角的三角函数线的画法,即先找到P,M,T点,再画出MP,OM,AT. 注意三角函数线是有向线段,要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论