




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5讲 第1课时 椭圆及其性质 基础题组练1已知正数m是2和8的等比中项,则圆锥曲线x21的焦点坐标为()A(,0)B(0,)C(,0)或(,0)D(0,)或(,0)解析:选B.因为正数m是2和8的等比中项,所以m216,即m4,所以椭圆x21的焦点坐标为(0,),故选B.2曲线1与曲线1(kb0)的左、右焦点分别为F1,F2,离心率为,过F2的直线l交C于A,B两点,若AF1B的周长为12,则C的方程为()A.y21 B.1C.1D.1解析:选D.由椭圆的定义,知|AF1|AF2|2a,|BF1|BF2|2a,所以AF1B的周长为|AF1|AF2|BF1|BF2|4a12,所以a3.因为椭圆的离心率e,所以c2,所以b2a2c25,所以椭圆C的方程为1,故选D.4(2019长春市质量检测(二)已知椭圆1的左、右焦点分别为F1,F2,过F2且垂直于长轴的直线交椭圆于A,B两点,则ABF1内切圆的半径为()A.B1C.D.解析:选D.法一:不妨设A点在B点上方,由题意知:F2(1,0),将F2的横坐标代入方程1中,可得A点纵坐标为,故|AB|3,所以内切圆半径r,其中S为ABF1的面积,C为ABF1的周长4a8.法二:由椭圆的通径公式可得|AB|3,则S233,C4a8,则r.5若椭圆C:1(ab0)的短轴长等于焦距,则椭圆的离心率为_解析:由题意可得bc,则b2a2c2c2,ac,故椭圆的离心率e.答案:6(2019贵阳模拟)若椭圆1(ab0)的离心率为,短轴长为4,则椭圆的标准方程为_解析:由题意可知e,2b4,得b2,所以解得所以椭圆的标准方程为1.答案:17已知椭圆的长轴长为10,两焦点F1,F2的坐标分别为(3,0)和(3,0)(1)求椭圆的标准方程;(2)若P为短轴的一个端点,求F1PF2的面积解:(1)设椭圆的标准方程为1(ab0),依题意得因此a5,b4,所以椭圆的标准方程为1.(2)易知|yP|4,又c3,所以SF1PF2|yP|2c4612.8分别求出满足下列条件的椭圆的标准方程(1)与椭圆1有相同的离心率且经过点(2,);(2)已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5,3,过P且与长轴垂直的直线恰过椭圆的一个焦点解:(1)由题意,设所求椭圆的方程为t1或t2(t1,t20),因为椭圆过点(2,),所以t12,或t2.故所求椭圆的标准方程为1或1.(2)由于焦点的位置不确定,所以设所求的椭圆方程为1(ab0)或1(ab0),由已知条件得解得a4,c2,所以b212.故椭圆方程为1或1.综合题组练1(2019贵阳市摸底考试)P是椭圆1(ab0)上的一点,A为左顶点,F为右焦点,PFx轴,若tanPAF,则椭圆的离心率e为()A. B.C.D.解析:选D.如图,不妨设点P在第一象限,因为PFx轴,所以xPc,将xPc代入椭圆方程得yP,即|PF|,则tanPAF,结合b2a2c2,整理得2c2aca20,两边同时除以a2得2e2e10,解得e或e1(舍去)故选D.2(2019湖北八校联考)如图,已知椭圆C的中心为原点O,F(5,0)为椭圆C的左焦点,P为椭圆C上一点,满足|OP|OF|且|PF|6,则椭圆C的方程为()A.1 B.1C.1D.1解析:选C.由题意知,c5,设右焦点为F,连接PF,由|OP|OF|OF|知,PFFFPO,OFPOPF,所以PFFOFPFPOOPF,所以FPOOPF90,即PFPF.在RtPFF中,由勾股定理得|PF|8,又|PF|PF|2a6814,所以a7,所以b2a2c224,所以椭圆C的方程为1,故选C.3(综合型)已知ABC的顶点A(3,0)和顶点B(3,0),顶点C在椭圆1上,则_解析:由椭圆方程知a5,b4,所以c3,所以A,B为椭圆的焦点因为点C在椭圆上,所以|AC|BC|2a10,|AB|2c6.所以3.答案:34已知椭圆方程为1(ab0),A,B分别是椭圆长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,若|k1k2|,则椭圆的离心率为_解析:设M(x0,y0),则N(x0,y0),|k1k2|,从而e.答案:5(2019兰州市诊断考试)已知椭圆C:1(ab0)经过点(,1),且离心率为.(1)求椭圆C的方程;(2)设M,N是椭圆上的点,直线OM与ON(O为坐标原点)的斜率之积为.若动点P满足2,求点P的轨迹方程解:(1)因为e,所以,又椭圆C经过点(,1),所以1,解得a24,b22,所以椭圆C的方程为1.(2)设P(x,y),M(x1,y1),N(x2,y2),则由2得xx12x2,yy12y2,因为点M,N在椭圆1上,所以x2y4,x2y4,故x22y2(x4x1x24x)2(y4y1y24y)(x2y)4(x2y)4(x1x22y1y2)204(x1x22y1y2)设kOM,kON分别为直线OM与ON的斜率,由题意知,kOMkON,因此x1x22y1y20,所以x22y220,故点P的轨迹方程为1.6(综合型)已知椭圆C:1(ab0)的离心率为,点M(2,1)在椭圆C上(1)求椭圆C的方程;(2)直线l平行于OM,且与椭圆C交于A,B两个不同的点若AOB为钝角,求直线l在y轴上的截距m的取值范围解:(1)依题意有解得故椭圆C的方程为1.(2)由直线l平行于OM,得直线l的斜率kkOM,又l在y轴上的截距为m,所以l的方程为yxm.由得x22mx2m240.因为直线l与椭圆C交于A,B两个不同的点,所以(2m)24(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机场建筑施工安全协议书
- 终止运营合同协议书模板
- 自己做厨房保洁合同范本
- 阿坝吊车租赁协议合同书
- 领养退役警犬协议书模板
- 法定解除合同协议书范本
- 高价商户停业协议书模板
- 物业撤出移交协议书范本
- 水表维修协议及维修合同
- 玉石加工买卖协议书模板
- von frey丝K值表完整版
- 轨枕工序安全操作规程
- 2021年消防继续教育试题汇总及答案
- GA 255-2022警服长袖制式衬衣
- JJF 1915-2021倾角仪校准规范
- GB/T 528-2009硫化橡胶或热塑性橡胶拉伸应力应变性能的测定
- GB/T 3299-1996日用陶瓷器吸水率测定方法
- GB/T 15382-2021气瓶阀通用技术要求
- 标准的起源、发展与标准化课件
- 精轧机组机械设备使用说明书
- 泰国禁忌课件
评论
0/150
提交评论