相似三角形应用列举.ppt_第1页
相似三角形应用列举.ppt_第2页
相似三角形应用列举.ppt_第3页
相似三角形应用列举.ppt_第4页
相似三角形应用列举.ppt_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

27.2.3 相似三角形的应用举例,1.三角形相似的判定方法有那些?,两个角对应相等的两个三角形相似。,两边对应成比例且夹角相等的两个三角形相似。,三边对应成比例的两个三角形相似。,2. 相似三角形的有哪些性质?,预备定理平行线构成的三角形与原三角形相似。,定义三个对应角相等,三条对应边的比相等。(不常用),相似三角形的性质,对应角相等,对应边成比例,对应高的比,对应中线的比、对应角平分线的比都等于相似比.,相似比等于对应边的比,周长的比等于相似比,面积的比等于相似比的平方,1.判断 (1)一个三角形的各边长扩大为原来的5倍,这个三角形的周长也扩大为原来的5倍; (2)一个四边形的各边长扩大为原来的9倍,这个四边形的面积也扩大为原来的9倍,练 习,2.把一个三角形变成和它相似的三角形, (1)如果面积扩大为原来的100倍,那么边长扩大为原来的_倍。 (2)如图在等边三角形ABC中,点D、 E分别在AB、AC边上,且DEBC, 如果BC=8cm,AD:AB=1:4,那么ADE 的周长等于_cm。 3.两个相似三角形的一对对应边分别是35厘米和14 厘米, (1)它们的周长差60厘米,这两个三角形的周长分别是 。 (2)它们的面积之和是58平方厘米,这两个三角形的面积分别是_。,据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度.,三、研读课文,三、研读课文,解:太阳光线是平行光线,因此_ =_. 又_ = _ =90 AOBFDE _ = _ BO=_,BAO,D,DFE,AOB,B,因此,金字塔的高为134米.,如图,如果木杆EF长2 m,它的影长FD为3m,测得OA为 201m,求金字塔的高度BO.,物1高 :物2高 = 影1长 :影2长,测高的方法,测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成正比例”的原理解决。,三、研读课文,如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交R如果测得QS = 45 m,ST = 90m,QR = 60 m,求河的宽度PQ,60 m,45 m,测距的方法,测量不能到达两点间的距离,常构造相似三角形求解。,三、研读课文,例5 如图,已知左、右并排的两棵大树的高分别是AB = 8 m和CD = 12 m,两树根部的距离BD = 5 m一个身高1.6 m的人沿着正对这两棵树的一条水平直路从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?,三、研读课文,解:由题意可知,ABL CDL ABCD, _. 即是 解得 FH=_,AFH CFK,FK,AH,8,1. 相似三角形的应用主要有两个方面:,(1) 测高,测量不能到达两点间的距离,常构造相似三角形求解。,(不能直接使用皮尺或刻度尺量的),(不能直接测量的两点间的距离),测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论